Hilfestellung Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
 
 
   | 
  
 
  
   
    
     
	  
	  
 | Aufgabe |  |  Zeigen Sie, dass [mm] $f\colon R\rightarrow [/mm] R$ mit [mm] $f(x)=3x^2-2x+3$ [/mm] für alle [mm] $x\in [/mm] R$ stetig ist.  |  
  
Hallo zusammen. Wir befassen uns gerade mit Stetigkeit. Da ich so etwas noch nie nachgewiesen habe, habe ich dies einfach mal versucht. Ich zeige euch einfach mal meine bisherige Lösung:
 
 
Sei [mm] $a\in [/mm] R$ und [mm] $\epsilon>0$ [/mm] beliebig. Definiere [mm] $\delta:=\frac{\epsilon}{??}$. [/mm] Dann gilt für alle [mm] $x\in [/mm] R$ mit [mm] $|x-a|\leq\delta$:
 [/mm] 
 
[mm] $|f(x)-f(a)|=|3x^2-2x+3-3a^2+2a-3|=|3x^2-3a^2+2a-2x|\leq|3x^2-3a^2|+|2a-2x|=|(x-a)||(3x+3a)|+|(x-a)||(-2)|\leq|x-a|(|3x|+|3a|+|(-2)|)$
 [/mm] 
 
Soweit bin ich nun. Ich weiss nun jetzt nicht wie ich weitermachen soll. Kann ich $(|3x|+|3a|+|(-2)|)$ als mein ?? in dem Bruch definieren?
 
 
      | 
     
    
   | 
  
 |          | 
 
 
   | 
  
 
  
   
    
     
	   | Status: | 
	   		           				(Mitteilung) Reaktion unnötig    |    | Datum: |  11:02 Mi 16.06.2010 |    | Autor: |  Teufel |   
	   
	   Hi!
 
 
Sieht doch ganz gut aus. Allerdings musst du vermeiden, ein x im [mm] \delta [/mm] zu haben. Daher schätz es noch einmal nach oben ab, z.b. durch |x-a|(|3a|+2).
 
 
Dann kannst du [mm] \delta=\bruch{\varepsilon}{|3a|+2} [/mm] setzen.
 
 
  Teufel
 
 
      | 
     
    
   | 
  
 
 |   
|                  | 
  
 
   | 
  
 
  
   
    
     
	  
	   Ok, dann würde meine Lösung nun so aussehen:
 
Sei [mm] $a\in [/mm] R$ und [mm] $\epsilon>0$ [/mm] beliebig. Definiere [mm] $\delta:=\frac{\epsilon}{|3a|+2}$. [/mm] Dann gilt für alle [mm] $x\in [/mm] R$ mit [mm] $|x-a|\leq\delta$ [/mm] : 
 
 
$ [mm] |f(x)-f(a)|=|3x^2-2x+3-3a^2+2a-3|=|3x^2-3a^2+2a-2x|\leq|3x^2-3a^2|+|2a-2x|=|(x-a)||(3x+3a)|+|(x-a)||(-2)|\leq|x-a|(|3x|+|3a|+|(-2)|)$
 [/mm] 
 
[mm] $=|x-a|(|3x|+|3a|+2)\leq|x-a|(|3a|+2)$
 [/mm] 
 
Folgt nun schon die Stetigkeit oder muss man nun noch etwas sagen?
 
 
      | 
     
    
   | 
  
 
 |   
|                          | 
   
 
   | 
  
 
  
   
    
     
	  
	   Hallo,
 
 
> Ok, dann würde meine Lösung nun so aussehen:
 
>  Sei [mm]a\in R[/mm] und [mm]\epsilon>0[/mm] beliebig. Definiere 
 
> [mm]\delta:=\frac{\epsilon}{|3a|+2}[/mm]. Dann gilt für alle [mm]x\in R[/mm] 
 
> mit [mm]|x-a|\leq\delta[/mm] : 
 
> 
 
> [mm]|f(x)-f(a)|=|3x^2-2x+3-3a^2+2a-3|=|3x^2-3a^2+2a-2x|\leq|3x^2-3a^2|+|2a-2x|=|(x-a)||(3x+3a)|+|(x-a)||(-2)|\leq|x-a|(|3x|+|3a|+|(-2)|)[/mm]
 
>  
 
> [mm]=|x-a|(|3x|+|3a|+2)\leq|x-a|(|3a|+2)[/mm]
 
>  
 
> Folgt nun schon die Stetigkeit oder muss man nun noch etwas 
 
> sagen? 
 
 
 
Nur zuende führen, mit dem oben gewählten [mm] $\red{\delta}$ [/mm] ist dann weiter für [mm] $\blue{|x-a|<\delta}$:
 [/mm] 
 
[mm] $\ldots=|x-a|(|3x|+|3a|+2)\leq\blue{|x-a|}(|3a|+2) [/mm] \ [mm] \blue{<} [/mm] \ [mm] \blue{\delta}\cdot{}(3|a|+2) [/mm] \ = \ [mm] \red{\frac{\varepsilon}{|3a|+2}}\cdot{}(3|a|+2)=\varepsilon$
 [/mm] 
 
Was ja genau da stehen soll lt. Definition ...
 
 
Gruß
 
 
schachuzipus
 
 
      | 
     
    
   | 
  
 
 |   
|                          | 
   
 
   | 
  
 
  
   
    
     
	   | Status: | 
	   		           				(Antwort) fertig    |    | Datum: |  11:48 Mi 16.06.2010 |    | Autor: |  Teufel |   
	   
	   Ich merke gerade, dass da etwas nicht gestimmt hat.
 
 
Noch einmal von vorne:
 
 
[mm] |3x^2-3a^2-2x+2a|\le3|x^2-a^2|+2|x-a|=3|(x-a)^2+2ax-2a^2|+2|x-a|=3|(x-a)^2+2a(x-a)|+2|x-a|\le3|x-a|^2+6a|x-a|+2|x-a|=3|x-a|^2+(6a+2)|x-a|<\varepsilon
 [/mm] 
 
Die Summe kriegt man nun kleiner als [mm] \varepsilon, [/mm] wenn sowohl [mm] |x-a|^2 [/mm] als auch (6a+2)|x-a| kleiner als [mm] \bruch{\varepsilon}{2} [/mm] sind.
 
 
Also:
 
[mm] 3\delta^2<\bruch{\varepsilon}{2} [/mm] und [mm] (6a+2)*\delta<\bruch{\varepsilon}{2}
 [/mm] 
 
Dann kannst du beide Ungleichungen nach [mm] \delta [/mm] umstellen (nennen wir sie [mm] \delta_1 [/mm] und [mm] \delta_2) [/mm] und dann endet die Suche nach dem Delta, indem du [mm] \delta:=min(\delta_1, \delta_2) [/mm] definierst.
 
 
Denn wenn du das [mm] \delta [/mm] so wählst, ist sowohl der 1. Summand, als auch der 2. kleiner als [mm] \bruch{\varepsilon}{2}, [/mm] die Summe ist dann also [mm] <\varepsilon.
 [/mm] 
 
Nur um das noch einmal richtig zu stellen.
 
 
  Teufel
 
 
      | 
     
    
   | 
  
 
 |   
  
   |