Hyperflächen, Abstände < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:47 Do 15.10.2009 | Autor: | Mary1986 |
Aufgabe | Im [mm] \IR^4[/mm] seien eine Gerade und eine Hyperfläche H gegeben durch :
[mm] G = \left\{ (1;0;1;0) + t (0;1;2;3) \right\}[/mm]
[mm] H = \left\{ x \in \IR^4 \left| \left\langle x;(1;1;-1;-1) \right\rangle = 2 \right\}[/mm]
a) Welchen Abstand hat der Punkt Null zu G
b) Welchen Abstand hat der Punkt Null zu H
d) Wo schneidet die Gerade G die Hyperfläche H |
Hallo Leute
Ich zerbrech mir schon seit ein paar Tagen darüber den Kopf, zumal ich auch am Samstag Klausur schreibe und das auch dabei sein wird.
Wenn ich den Abstand von einem Punkt zu einer Gerade berechen, erstelle ich eine Hilfsebene und lege in die eine Gerade die so orthogonal auf der anderen Gerade steht und damit den kürzesten Abstand wiedergibt.
Für Aufgabe a ist damit die Lösung:
Abstand 0 zu G = [mm]\wurzel{ \bruch{12}{7}}[/mm]
So, bei b weiß ich schon garnicht wie ich vorgehen soll... wir hatte da mal so eine Formel: [mm] \left\langle c;x \right\rangle - \alpha [/mm] Aber ich weiß nicht wie ich die anwenden soll.
Und bei c... normalerweise setzte man ja zwei Geraden gleich um deren Schnittpunkt zu erhalten, bzw bei Gerade und Eben setzt man die gerade in die Ebene ein... aber ich weiß bei einer Hyperfläche nicht wie ich das machen soll!
Viele dank für eure Hilfe
mary
|
|
|
|
Hallo,
[mm] \langle [/mm] x;[1;1;-1;-1] [mm] \rangle [/mm] ist doch das Skalarpodukt, somit ist [mm] \langle [/mm] x;[1;1;-1;-1] [mm] \rangle=(\overrightarrow{x}-\overrightarrow{x_0})*\overrightarrow{n}=h*|n| [/mm] Nun setzt du [mm] x_0 =x_i [/mm] und x=0 und somit ist h*|n|=2.
Die Gleichung kannst du umschreiben in [mm] x_1+x_2-x_3-x_4=2 [/mm] und die Gerade einsetzen. Genauso macht man das bei beliebig vielen Dimensionen in Euklidischen Räumen.
lg
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:34 Do 15.10.2009 | Autor: | Mary1986 |
hey super... hab mir schon gedacht, dass es was ganz einfaches sein muss, bin aber selbst nicht drauf gekommen, bzw. hab leider auch keine musterlösung
dank dir
|
|
|
|