www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathematik-Wettbewerbe" - IMO - France 1978
IMO - France 1978 < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

IMO - France 1978: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:59 So 23.04.2006
Autor: dazivo

Aufgabe
Es seien zwei positive reelle Folgen (x) und (y), wobei beide monoton steigend sind, also
[mm] $x_{i-1} \geq x_{i}$ [/mm] und [mm] $y_{i-1} \geq y_{i}$. [/mm] Und es sei die Folge (z), die eine Permutation von (y) ist. Beweise, dass
[mm] \summe_{k=1}^{n}{(x_{k}-y_{k})^{2}} \geq \summe_{k=1}^{n}{(x_{k}-z_{k})^{2}} [/mm]

Hab ein bisschen Schwierigkeiten die Ungleichung zu beweisen. Wenn jemand Lust und Zeit hat, kann er oder sie mir vielleicht helfen.

        
Bezug
IMO - France 1978: Antwort
Status: (Antwort) fertig Status 
Datum: 13:36 Mo 24.04.2006
Autor: DirkG

Weise nach, dass das Minimum von

$$f(z) := [mm] \sum_{k=1}^n (x_k-z_k)^2$$ [/mm]

gerade für das "geordnete" $y$ erreicht wird. Das geht z.B. indirekt, indem du die Annahme der Minimalität von $f(z)$ bei gleichzeitigem Auftreten von [mm] $x_i>x_j,z_i
[mm] $$(x_i-z_i)^2+(x_j-z_j)^2 [/mm] > [mm] (x_i-z_j)^2+(x_j-z_i)^2$$ [/mm]

zum Widerspruch führst.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]