www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Induktion für Ableitung
Induktion für Ableitung < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion für Ableitung: Aufgabe
Status: (Frage) für Interessierte Status 
Datum: 18:17 Do 10.11.2005
Autor: GetBack

Hallo Leute,

ich hab da ein Problem mit folgender Aufgabe (ich schreib einfach mal, was ich schon gemacht habe).

Beweis durch vollständige Induktion über n von [mm] {d^n \over dx^n} \left(x^2 -1 \right)^n = 2^n \cdot n! [/mm] für [mm] x=1 [/mm]
IA: n=1: [mm] {d \over dx} \left(x^2 -1 \right) = 2x [/mm] dann folgt für [mm] x=1: \quad 2=2^1 \cdot 1! [/mm]
IV: [mm] {d^n \over dx^n} \left(x^2 -1 \right)^n = 2^n \cdot n! [/mm] für [mm] x=1 [/mm] gelte für ein [mm] n \in \mathbb{N} [/mm].
IS:
[mm] {d^{n+1} \over dx^{n+1}} \left(x^2 -1 \right)^{n+1} = {d^{n+1} \over dx^{n+1}} \left( \sum_{k=0}^{n+1} {(-1)^k {n+1 \choose k} x^{2(n+1-k)}} \right)[/mm]
[mm]= {d^{n} \over dx^{n}} \left( {d \over dx} \left( \sum_{k=0}^{n+1} {(-1)^k {n+1 \choose k} x^{2(n+1-k)}} \right) \right)[/mm]
[mm]= {d^{n} \over dx^{n}} \left( \sum_{k=0}^{n} {(-1)^k {n+1 \choose k} \cdot 2(n+1-k) \cdot x^{2(n+1-k)-1}} \right)[/mm]
[mm]= 2 (n+1) \cdot {d^{n} \over dx^{n}} \left( \sum_{k=0}^{n} {(-1)^k {n \choose k} x^{2(n-k)+1}} \right) [/mm]

Wie man sieht, habe ich in der Summe ein x zuviel! Gehe ich an das Problem falsch heran oder fehlt mir einfach noch ein Schritt?
Bewiesen habe ich schon, dass [mm] {d^j \over dx^j} \left(x^2 -1 \right)^n = 0 [/mm] für [mm] 0 \le j < n, x=1 [/mm]. Aber das bringt mich auch nicht weiter.

Vielen Dank im Voraus
GetBack

        
Bezug
Induktion für Ableitung: Bitte keine Doppelpostings!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:32 Do 10.11.2005
Autor: Loddar

Hallo GetBack!


Bitte keine Doppelpostings hier innerhalb des MatheRaumes produzieren.

Diese Frage hast Du bereits hier gestellt ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]