www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Operations Research" - Infimum
Infimum < Operations Research < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Infimum: Idee
Status: (Frage) beantwortet Status 
Datum: 19:43 Sa 05.11.2011
Autor: vanessa88_T

Aufgabe
Zeigen Sie:
Ein Minimierungsproblem P auf der zulässigen Menge M mit Zielfunktion f ist genau dann lösbar, wenn das Infimum von f auf M angenommen wird, es also ein x* [mm] \in [/mm] M gibt mit f(x*) = inf f(x)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo Leute,
Ich verstehe ehrlich gesagt nicht so ganz, was ich da jetzt noch zeigen muss. Es steht doch schon in der Aufgabenstellung. Wenn das Infimum von f angenommen wird, gibt es also die größte untere Schranke von f auf M und da mit X* [mm] \in [/mm] M diese größte untere Schranke auch angenommen wird, so kann P nur lösbar sein und umgekehrt gilt natürlich dasselbe: wenn P lösbar ist, dann muss das Infimum angenommen werden.
Was soll ich da jetzt noch großartig zeigen?

        
Bezug
Infimum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:04 Sa 05.11.2011
Autor: donquijote

Scheint mir auch so, dass der Beweis im Wesentlichen aus dem Hinschreiben der Definitionen besteht. Wobei die genaue Form des Beweises davon abhängt, wie ihr die Begriffe wie Minimierungsproblem und zulässige Menge genau definiert habt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]