www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Injektiv/Biholomorph
Injektiv/Biholomorph < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektiv/Biholomorph: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:27 Mi 15.06.2011
Autor: Rubstudent88

Aufgabe
Es seien U [mm] \in \IC [/mm] ein Gebiet und f [mm] \in \mathcal{O}(U) [/mm]  injektiv. Zeigen Sie: f´(z) [mm] \not= [/mm] 0 für alle z [mm] \in [/mm] U, d.h. f ist biholomorph auf das offene Bild f(U).

Hallo zusammen,

ich bin bei dieser Aufgabe etwas ratlos. Erstmal muss ich ja zeigen, dass f holomorph ist. Dann muss eine Umkehrabbildung existieren und diese soll wiederum holomorph sein.

Da f aus der Algebra der holomorphen Funktionen ist, ist f schonmal holomorph. Wie komme ich jetzt auf die Umkehrabbildung?

Beste Grüße

        
Bezug
Injektiv/Biholomorph: Antwort
Status: (Antwort) fertig Status 
Datum: 08:53 Do 16.06.2011
Autor: fred97

Benutze folgenden Satz (wenn Ihr ihn hattet, wenn Ihr in nicht hattet, bin ich ratlos)

Satz: Sei f auf dem Gebiete G holomorph und nicht konstant , sei [mm] z_0 \in [/mm] G, [mm] w_0:=f(z_0) [/mm] und [mm] f-w_0 [/mm] habe in [mm] z_0 [/mm] eine m-fache Nullstelle. Dann gibt es eine Umgebung V von [mm] z_0, [/mm] V [mm] \subseteq [/mm] G, und eine auf V holomorphe Funktion h mit:

           [mm] $f=w_0+h^m$ [/mm] auf V.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]