Integral-Formel für Restglied < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Ich habe hier die Integral-Formel für das Restglied des Taylor-Polynoms samt Beweis. Doch ich blicke den Beweis nicht ganz:
Sei f: I [mm] \to \IC [/mm] (n+1)-mal stetig diff'bar für n [mm] \in \IN_{0}
[/mm]
[mm] \Rightarrow R_{n+1}(x) [/mm] = [mm] \bruch{1}{n!} \integral_{a}^{x}{f^{(n+1)}(t) (x-t)^n dt}
[/mm]
Beweis: mit Induktion
I.A. (n = 0) : [mm] R_{1}(x) [/mm] = f(x) - [mm] T_{0,a}(x) [/mm] = f(x) - f(a) [mm] \overbrace{=}^{HDI} \bruch{1}{0!} \integral_{a}^{x}{f'(t) \overbrace{(x-t)^0}^{=1} dt}
[/mm]
I.S. (n [mm] \to [/mm] n+1) : f(x) = [mm] T_{n,a}(x) \overbrace{=}^{I.V.} \bruch{1}{n!} \integral_{a}^{x}{f^{(n+1)}(t) (x-t)^n dt} \overbrace{=}^{part. Integr.} \bruch{1}{n!}[\underbrace{\bruch{(-1)}{n+1}(x-t)^{n+1} f^{(n+1)}(t)|_a^x}_{= T_{n+1,a}(x) - T_{n,a}(x)} [/mm] + [mm] \integral_{a}^{x}{\bruch{1}{n+1}(x-t)^{n+1} f^{(n+2)}(t) dt}]
[/mm]
[mm] \Rightarrow R_{n+2}(x) [/mm] = f(x) - [mm] T_{n+1,a}(x) [/mm] = [mm] \bruch{1}{(n+1)!} \integral_{a}^{x}{f^{(n+2)}(t) (x-t)^{n+1} dt}
[/mm]
Und genau in dem letzten Schritt liegt mein Problem. Ich denke, ich kann dem Beweis ganz gut folgen, aber den letzten Folgepfeil kann ich nicht nachvollziehen.
Ist nicht [mm] \integral_{a}^{x}{\bruch{1}{n+1}(x-t)^{n+1} f^{(n+2)}(t) dt} [/mm] = [mm] R_{n+2}(x) [/mm] ? Dann steht doch im Induktionsschritt (zusammengerafft):
f(x) = [mm] T_{n+1,a}(x) [/mm] - [mm] T_{n,a}(x) [/mm] + [mm] R_{n+2}(x) [/mm] (Oder?)
Durch Umstellen erhalte ich ja dann: [mm] R_{n+2}(x) [/mm] = f(x) - [mm] T_{n+1,a}(x) [/mm] + [mm] T_{n,a}(x) [/mm] , wobei "+ [mm] T_{n,a}(x)" [/mm] ja hier noch zu viel ist!
Wie werde ich das los, oder bin ich schon viel eher auf dem Holzweg?
LG fagottator
|
|
|
|
Hallo fagottator,
> Ich habe hier die Integral-Formel für das Restglied des
> Taylor-Polynoms samt Beweis. Doch ich blicke den Beweis
> nicht ganz:
>
> Sei f: I [mm]\to \IC[/mm] (n+1)-mal stetig diff'bar für n [mm]\in \IN_{0}[/mm]
>
> [mm]\Rightarrow R_{n+1}(x)[/mm] = [mm]\bruch{1}{n!} \integral_{a}^{x}{f^{(n+1)}(t) (x-t)^n dt}[/mm]
>
> Beweis: mit Induktion
> I.A. (n = 0) : [mm]R_{1}(x)[/mm] = f(x) - [mm]T_{0,a}(x)[/mm] = f(x) - f(a)
> [mm]\overbrace{=}^{HDI} \bruch{1}{0!} \integral_{a}^{x}{f'(t) \overbrace{(x-t)^0}^{=1} dt}[/mm]
>
> I.S. (n [mm]\to[/mm] n+1) : f(x) = [mm]T_{n,a}(x) \overbrace{=}^{I.V.} \bruch{1}{n!} \integral_{a}^{x}{f^{(n+1)}(t) (x-t)^n dt} \overbrace{=}^{part. Integr.} \bruch{1}{n!}[\underbrace{\bruch{(-1)}{n+1}(x-t)^{n+1} f^{(n+1)}(t)|_a^x}_{= T_{n+1,a}(x) - T_{n,a}(x)}[/mm]
> + [mm]\integral_{a}^{x}{\bruch{1}{n+1}(x-t)^{n+1} f^{(n+2)}(t) dt}][/mm]
>
> [mm]\Rightarrow R_{n+2}(x)[/mm] = f(x) - [mm]T_{n+1,a}(x)[/mm] =
> [mm]\bruch{1}{(n+1)!} \integral_{a}^{x}{f^{(n+2)}(t) (x-t)^{n+1} dt}[/mm]
>
>
> Und genau in dem letzten Schritt liegt mein Problem. Ich
> denke, ich kann dem Beweis ganz gut folgen, aber den
> letzten Folgepfeil kann ich nicht nachvollziehen.
> Ist nicht [mm]\integral_{a}^{x}{\bruch{1}{n+1}(x-t)^{n+1} f^{(n+2)}(t) dt}[/mm]
> = [mm]R_{n+2}(x)[/mm] ? Dann steht doch im Induktionsschritt
> (zusammengerafft):
> f(x) = [mm]T_{n+1,a}(x)[/mm] - [mm]T_{n,a}(x)[/mm] + [mm]R_{n+2}(x)[/mm] (Oder?)
> Durch Umstellen erhalte ich ja dann: [mm]R_{n+2}(x)[/mm] = f(x) -
> [mm]T_{n+1,a}(x)[/mm] + [mm]T_{n,a}(x)[/mm] , wobei "+ [mm]T_{n,a}(x)"[/mm] ja hier
> noch zu viel ist!
>
> Wie werde ich das los, oder bin ich schon viel eher auf dem
> Holzweg?
Lese die Gleichung sorgfältig durch.
Es steht hier nämlich:
[mm]f(x) -T_{n,a}(x) \overbrace{=}^{I.V.} \bruch{1}{n!} \integral_{a}^{x}{f^{(n+1)}(t) (x-t)^n dt} \overbrace{=}^{part. Integr.} \bruch{1}{n!}[\underbrace{\bruch{(-1)}{n+1}(x-t)^{n+1} f^{(n+1)}(t)|_a^x}_{= T_{n+1,a}(x) - T_{n,a}(x)}[/mm]
[mm]+\integral_{a}^{x}{\bruch{1}{\left(n+1\right)!}(x-t)^{n+1} f^{(n+2)}(t) dt}[/mm]
[mm]=T_{n+1,a}\left(x\right)-T_{n,a}\left(x\right)+\integral_{a}^{x}{\bruch{1}{\left(n+1\right)!}(x-t)^{n+1} f^{(n+2)}(t) dt}[/mm]
Insgesamt also:
[mm]f(x) -T_{n,a}(x) = T_{n+1,a}\left(x\right)-T_{n,a}\left(x\right)+\integral_{a}^{x}{\bruch{1}{\left(n+1\right)!}(x-t)^{n+1} f^{(n+2)}(t) dt}[/mm]
[mm]\Rightarrow f(x) -T_{n+1,a}(x) = \integral_{a}^{x}{\bruch{1}{\left(n+1\right)}(x-t)^{n+1} f^{(n+2)}(t) dt}[/mm]
>
> LG fagottator
Gruss
MathePower
|
|
|
|
|
Hallo MathePower
> Lese die Gleichung sorgfältig durch.
>
> Es steht hier nämlich:
>
> [mm]f(x) -T_{n,a}(x) \overbrace{=}^{I.V.} \bruch{1}{n!} \integral_{a}^{x}{f^{(n+1)}(t) (x-t)^n dt} \overbrace{=}^{part. Integr.} \bruch{1}{n!}[\underbrace{\bruch{(-1)}{n+1}(x-t)^{n+1} f^{(n+1)}(t)|_a^x}_{= T_{n+1,a}(x) - T_{n,a}(x)}[/mm]
> [mm]+\integral_{a}^{x}{\bruch{1}{\left(n+1\right)!}(x-t)^{n+1} f^{(n+2)}(t) dt}[/mm]
>
Aber da steht doch nicht f(x) - [mm] T_{n,a}(x) [/mm] sondern f(x) = [mm] T_{n,a}(x)! [/mm] Oder meinst du, hier hat sich der Fehlerteufel eingeschlichenund es muss "-" statt "=" heißen?
> [mm]=T_{n+1,a}\left(x\right)-T_{n,a}\left(x\right)+\integral_{a}^{x}{\bruch{1}{\left(n+1\right)!}(x-t)^{n+1} f^{(n+2)}(t) dt}[/mm]
>
> Insgesamt also:
>
> [mm]f(x) -T_{n,a}(x) = T_{n+1,a}\left(x\right)-T_{n,a}\left(x\right)+\integral_{a}^{x}{\bruch{1}{\left(n+1\right)!}(x-t)^{n+1} f^{(n+2)}(t) dt}[/mm]
Dementsprechend stimmt doch auch die von dir genannte Gleichung nicht, oder?
>
> [mm]\Rightarrow f(x) -T_{n+1,a}(x) = \integral_{a}^{x}{\bruch{1}{\left(n+1\right)}(x-t)^{n+1} f^{(n+2)}(t) dt}[/mm]
>
>
> >
> > LG fagottator
>
>
> Gruss
> MathePower
LG fagottator
|
|
|
|
|
Hallo fagottator,
> Hallo MathePower
> > Lese die Gleichung sorgfältig durch.
> >
> > Es steht hier nämlich:
> >
> > [mm]f(x) -T_{n,a}(x) \overbrace{=}^{I.V.} \bruch{1}{n!} \integral_{a}^{x}{f^{(n+1)}(t) (x-t)^n dt} \overbrace{=}^{part. Integr.} \bruch{1}{n!}[\underbrace{\bruch{(-1)}{n+1}(x-t)^{n+1} f^{(n+1)}(t)|_a^x}_{= T_{n+1,a}(x) - T_{n,a}(x)}[/mm]
> > [mm]+\integral_{a}^{x}{\bruch{1}{\left(n+1\right)!}(x-t)^{n+1} f^{(n+2)}(t) dt}[/mm]
>
> >
> Aber da steht doch nicht f(x) - [mm]T_{n,a}(x)[/mm] sondern f(x) =
> [mm]T_{n,a}(x)![/mm] Oder meinst du, hier hat sich der Fehlerteufel
> eingeschlichenund es muss "-" statt "=" heißen?
>
Ja, da hat sich in dem Beweis der Fehlerteufel breitgemacht.
> >
> [mm]=T_{n+1,a}\left(x\right)-T_{n,a}\left(x\right)+\integral_{a}^{x}{\bruch{1}{\left(n+1\right)!}(x-t)^{n+1} f^{(n+2)}(t) dt}[/mm]
>
> >
> > Insgesamt also:
> >
> > [mm]f(x) -T_{n,a}(x) = T_{n+1,a}\left(x\right)-T_{n,a}\left(x\right)+\integral_{a}^{x}{\bruch{1}{\left(n+1\right)!}(x-t)^{n+1} f^{(n+2)}(t) dt}[/mm]
>
> Dementsprechend stimmt doch auch die von dir genannte
> Gleichung nicht, oder?
>
> >
> > [mm]\Rightarrow f(x) -T_{n+1,a}(x) = \integral_{a}^{x}{\bruch{1}{\left(n+1\right)}(x-t)^{n+1} f^{(n+2)}(t) dt}[/mm]
>
> >
> >
> > >
> > > LG fagottator
> >
> >
> > Gruss
> > MathePower
> LG fagottator
Gruss
MathePower
|
|
|
|