| Integral- Haupts. < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe 
 
 
  |  |  
  | 
    
     |  | Status: | (Frage) beantwortet   |   | Datum: | 21:51 Mo 25.09.2006 |   | Autor: | Kristien | 
 Habe hier folgende Aufgabe: f(z)= $ [mm] \wurzel[3]{z}-\bruch{1}{\wurzel[3]{z}} [/mm] $
 Ermitteln Sie diejenige Stammfunktion von f(z), die an ihren Extremstellen den Wert -2 annimmt. Berechnen Sie das bestimmte Integral von f in den Grenzen dieser Extremstellen.
 
 Also Extremstellen sind 1 &-1.  Die Stammfunktion wäre demnach:
 
 $ [mm] \bruch{3}{4}z^{1\bruch{1}{3}}-\bruch{3}{2}z^{\bruch{2}{3}}-1\bruch{1}{4} [/mm] $
 
 Um das Integral zu berechnen müsste ich also: F(1)-F(-1) rechnen. Doch was kommt dabei raus? Für F(1) würde ja -2 rauskommen aber was kommt bei -1 raus? Ich kann schließlich nicht $ [mm] -1^{1\bruch{1}{3}} [/mm] $ rechnen usw. kommt dann einfach $ [mm] -1\bruch{1}{4} [/mm] $ raus, oder gar nichts?
 
 2.Frage, was bedeutet es eigentlich, wenn z.B. bei F(1)=5 rauskommt, bedeutet das, dass der flächeninhalt dort 5 ist?, denn mit der integralrechnung wird schließlich die Fläche berechnet
 
 
 |  |  |  | 
 
  |  |  
  | 
    
     |  | Status: | (Antwort) fertig   |   | Datum: | 22:36 Mo 25.09.2006 |   | Autor: | Teufel | 
 Hallo!
 
 [mm] -1^{1\bruch{1}{3}}=-1^{\bruch{4}{3}}=\wurzel[3]{(-1)^{4}}=1!
 [/mm]
 
 Das gleiche auch beim nächsten 2.
 
 
 Aber kann man [mm] \integral_{-1}^{1}{f(x) dx} [/mm] überhaupt berechnen? Voraussetzung dafür ist ja, dass f stetig im Intervall [-1;1] ist. Aber wenn man sich x=0 anguckt, ist das wohl nicht der Fall.
 
 
 2.
 Mit Integralrechnung kann die Fläche berechnet werden!
 Und mit F(1)=5 kann man nicht soo viel anfangen. Im Intervall [0;1] hat die Funktion dann einen Flächeninhalt von 5, wenn sie nicht zwischendurch die  x-Achse schneidet.
 
 Beispiel: Berechne mal das bestimmte Integral von x³ von -1 bis 1. Du wirst 0 herausbekommen, und das kann scheinbar keine Fläche sein! Das liegt daran, dass f(x)=x³ die x-Achse bei 0 schneidet. Dann hast bei [0;1] eine positive Fläche und bei [-1;0] die gleiche, nur negativ. Und die heben sich gegenseitig auf!
 
 |  |  | 
 
 
 |