www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Integral. Probl. m. d. Grenzen
Integral. Probl. m. d. Grenzen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral. Probl. m. d. Grenzen: Frage zu den Grenzen
Status: (Frage) beantwortet Status 
Datum: 21:08 So 10.07.2005
Autor: Limschlimm

Hallo Leute.

Habe Verständnisschwierigkeiten bei folgendem Integral:

[mm] \integral_{G}^{} {12x^2y^3 dG} [/mm]

Der Bereich G in der xy-Ebene wird durch folgende Geraden begrenzt:

x = 4 ; y = 1 ; x + 2y = 2

Leider weis ich nicht welche Grenze für was ist! Ich tue mich allgemein schwer mit den Integrationsgrenzen (V.Integrale, F.Integrale etc.)
Hat jemand nen guten Tip wie man diesem Problem mit den Grenzen Herr werden kann??
Es soll übrigens das Volumen dieses Körpers bestimmt werden.

Ergebnis ist: 1664/35

Grüße, LS

        
Bezug
Integral. Probl. m. d. Grenzen: Grenzen
Status: (Antwort) fertig Status 
Datum: 21:27 So 10.07.2005
Autor: MathePower

Hallo Limschlimm,

> Hallo Leute.
>  
> Habe Verständnisschwierigkeiten bei folgendem Integral:
>  
> [mm]\integral_{G}^{} {12x^2y^3 dG}[/mm]
>  
> Der Bereich G in der xy-Ebene wird durch folgende Geraden
> begrenzt:
>  
> x = 4 ; y = 1 ; x + 2y = 2
>
> Leider weis ich nicht welche Grenze für was ist! Ich tue
> mich allgemein schwer mit den Integrationsgrenzen
> (V.Integrale, F.Integrale etc.)

Die Grenzen x=4 und y=1 sind ja explizit vorgegeben.

Löse die 3. Gleichung nach x auf. Und bestimme den Schnitt mit der Gerade x=4. Dann hast Du auch Deine Grenzen für y.

>  Hat jemand nen guten Tip wie man diesem Problem mit den
> Grenzen Herr werden kann??
>  Es soll übrigens das Volumen dieses Körpers bestimmt
> werden.
>  
> Ergebnis ist: 1664/35

Das kommt auch dann heraus.[ok]

>  
> Grüße, LS

Gruß
MathePower

Bezug
                
Bezug
Integral. Probl. m. d. Grenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:48 So 10.07.2005
Autor: Limschlimm

Hi.

Danke für deine Antwort.

Leider bekomm ich nicht das gleiche Ergebnis raus.

Ich hab so gerechnet.

Hab (wie du sagtest) GL 3. nach x aufgelöt und mit x = 4 gleichgesetzt um den Schnittpunkt zu bestimmen. Ich hab dadurch für y = -1 raus.

Das Integral schaut dann folgendermaßen aus:


[mm] \integral_{-1}^{1} [/mm] { [mm] \integral_{0}^{4} {12x^2y^3 dxdy}} [/mm]

Ist es soweit richtig und ich hab mich irgendwo verrechnet oder sind die Grenzen falsch?

Grüße, LS


Bezug
                        
Bezug
Integral. Probl. m. d. Grenzen: Integrationsgrenzen
Status: (Antwort) fertig Status 
Datum: 22:23 So 10.07.2005
Autor: MathePower

Hallo Limschlimm.

>  
> Hab (wie du sagtest) GL 3. nach x aufgelöt und mit x = 4
> gleichgesetzt um den Schnittpunkt zu bestimmen. Ich hab
> dadurch für y = -1 raus.


>  
> Das Integral schaut dann folgendermaßen aus:
>  
>
> [mm]\integral_{-1}^{1}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{ [mm]\integral_{0}^{4} {12x^2y^3 dxdy}}[/mm]

Beachte das die Untergrenze vom zweiten Integral eine Funktion x(y) ist.

>  
> Ist es soweit richtig und ich hab mich irgendwo verrechnet
> oder sind die Grenzen falsch?

Fast alle Grenzen sind richtig.

Das Integral muß so aussehen:

[mm] \int\limits_{ - 1}^1 {\;\int\limits_{2\; - \;2y}^4 {12\;x^2 \;y^3 \;dx\;dy} } [/mm]

Gruß
MathePower

>  
> Grüße, LS
>  

Bezug
                                
Bezug
Integral. Probl. m. d. Grenzen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:49 So 10.07.2005
Autor: Limschlimm

Jetzt hats endlich geklappt! Das Ergebnis passt :)

Vielen Dank nochmal für deine Mühe

Viele Grüße, LS

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]