www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integral
Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:25 Fr 08.02.2008
Autor: CH22

Aufgabe
Es seien f; g : [a; b] [mm] \to \IR [/mm] integrierbar und r; s [mm] \in \IR. [/mm] Zeigen Sie:
(a) rf + sg ist integrierbar, und es gilt
[mm] \integral_{a}^{b}{(rf+sg)(x) dx}= r\integral_{a}^{b}{f(x) dx}+s\integral_{a}^{b}{g(x) dx} [/mm]
(b) Wenn [mm] f(x)\ge [/mm] 0 fur alle x [mm] \in [/mm] [a; b], dann folgt
[mm] \integral_{a}^{b}{f(x) dx}\ge [/mm] 0

(c) Wenn f(x) [mm] \le [/mm] g(x) fur alle x [mm] \in [/mm] [a; b], dann folgt

[mm] \integral_{a}^{b}{f(x) dx}\le \integral_{a}^{b}{g(x) dx} [/mm]

Hi ich brauche noch Punkte kann mir jemand helfen


Vieloe Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 22:29 Fr 08.02.2008
Autor: Gogeta259

Sollen das Scherzfragen sein?
An welcher Universität macht man solche Aufgaben?

diese Aussagen sind doch absolut Trivial!

Beim ersten verwendest du die Additivität von Integralen und die Konstantenregel.

Bei der zweiten kannst du die Funktion ja, nach unten abschätzen mit null
, also f(x)>=0und ein Integral über 0 ist auch null (also [mm] \integral_{a}^{b}{f(x) dx}>=\integral_{a}^{b}{0 dx}=0 [/mm]

Die dritte geht analog aus f(x)<=g(x) folgt f(x)<=g_min ==>
[mm] \integral_{a}^{b}{f(x) dx}<=(b-a)*g_min [/mm]
Jetzt gilt aber g(x)>=g_min ==> [mm] \integral_{a}^{b}{g(x)dx}>=(b-a)g_min [/mm]

Durch diese beiden Ungleichungen folgt:
[mm] \integral_{a}^{b}{f(x) dx}<= \integral_{a}^{b}{g(x)dx} [/mm]

Also auch wenn ich die Beweise Schlapig geführt habe sind sie doch richtig.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]