Integral berechnen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:49 Do 10.07.2008 | Autor: | moomann |
Aufgabe | Untersuche folgende Reihe auf Konvergenz:
[mm] \summe_{}^{}(\wurzel[n]{a}-1)_{n \in \IN} [/mm] für a > 1. |
Hallo!
Für o.g. Aufgabe soll ich folgenden Satz anwenden:
[mm] \summe_{}^{}(f(n))_{n \in \IN} [/mm] ist genau dann konvergent, wenn sup [mm] \left\{ \integral_{1}^{n}{f(t) dt} | n \in \IN \right\} [/mm] < [mm] \infty [/mm] ist.
Ich habe Folgendes probiert:
[mm] \integral_{1}^{n}{ (a^{\frac{1}{t}}-1) dt} [/mm] = [mm] \integral_{1}^{n}{ (\exp{(\log(a)\frac{1}{t})}- \exp{(0)}) dt} [/mm] = [mm] \integral_{1}^{n}{ \integral_{0}^{\log(a) \frac{1}{t}}{ \exp{(s)} ds} dt}.
[/mm]
Nun weiß ich nicht weiter. Kann ich das Doppelintegral irgendwie vereinfachen, um es dann ausrechnen zu können?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:22 Fr 11.07.2008 | Autor: | Marcel |
Hallo Moomann,
> Untersuche folgende Reihe auf Konvergenz:
>
> [mm]\summe_{}^{}(\wurzel[n]{a}-1)_{n \in \IN}[/mm] für a > 1.
> Hallo!
>
> Für o.g. Aufgabe soll ich folgenden Satz anwenden:
>
> [mm]\summe_{}^{}(f(n))_{n \in \IN}[/mm] ist genau dann konvergent,
> wenn sup [mm]\left\{ \integral_{1}^{n}{f(t) dt} | n \in \IN \right\}[/mm]
> < [mm]\infty[/mm] ist.
>
>
> Ich habe Folgendes probiert:
>
> [mm]\integral_{1}^{n}{ (a^{\frac{1}{t}}-1) dt}[/mm] =
> [mm]\integral_{1}^{n}{ (\exp{(\log(a)\frac{1}{t})}- \exp{(0)}) dt}[/mm]
> = [mm]\integral_{1}^{n}{ \integral_{0}^{\log(a) \frac{1}{t}}{ \exp{(s)} ds} dt}.[/mm]
>
> Nun weiß ich nicht weiter. Kann ich das Doppelintegral
> irgendwie vereinfachen, um es dann ausrechnen zu können?
ich glaube, Du machst es Dir zu kompliziert und siehst dadurch die einfachen Sachen nicht. (Wobei das relativ ist, denn bei meinem einfachen Weg benötigt man ein Wissen, vgl. [mm] $(\star)$.) [/mm]
Es gilt
[mm] $$(I)\;\;\;\int_{1}^{n}{ (a^{\frac{1}{t}}-1)\; dt}=\int_{1}^{n}\left(\sum_{k=0}^\infty \frac{\left(\frac{\ln(a)}{t}\right)^k}{k!}-1\right)\;dt=\int_{1}^{n}\sum_{k=1}^\infty \frac{\left(\frac{\ln(a)}{t}\right)^k}{k!}\;dt \ge \int_{1}^{n} \frac{\ln(a)}{t}\;dt=\ln(a)\int_{1}^{n} \frac{1}{t}\;dt$$
[/mm]
Nun ist [mm] $\ln(a) [/mm] > 0$ und wogegen strebt [mm] $\int_{1}^{n} \frac{1}{t}\;dt$ [/mm] bei $n [mm] \to \infty$? [/mm] (Und warum?)
Ich hoffe natürlich, dass Dir die Reihenentwicklung
$$
[mm] (\star)\;\;\;\exp(z)=\sum_{k=0}^\infty \frac{z^k}{k!}
[/mm]
$$
bekannt ist und dass Du bei der Abschätzung $(I)$ auch siehst, dass $a > 1$ berücksichtigt wurde, weil wir ja [mm] $\ln(a) [/mm] > 0$ brauchen.
Und ich habe nur [mm] $\ln(a)$ [/mm] anstelle Deines [mm] $\log(a)$ [/mm] geschrieben, weil ich das so gewohnt bin... Bei mir ist halt [mm] $\ln(\cdot)$ [/mm] die Umkehrfunktion der auf [mm] $\mathbb{R}$ [/mm] definierten [mm] $\exp(\cdot)$... [/mm]
Ansonsten noch ein Wort zu der Abschätzung bei $(I)$:
Sie gilt für jedes $n [mm] \in \IN$, [/mm] da für jedes $t [mm] \ge [/mm] 1$ (eigentlich sogar für jedes $t > 0$) wegen [mm] $\ln(a) [/mm] > 0$ gilt:
$$
[mm] \sum_{k=1}^\infty \frac{\left(\frac{\ln(a)}{t}\right)^k}{k!}=\frac{\ln(a)}{t}+\underbrace{\frac{\ln^2(a)}{t^2*2!}}_{\ge 0}+\underbrace{\frac{\ln^3(a)}{t^3*3!}}_{\ge 0}+\underbrace{\frac{\ln^4(a)}{t^4*4!}}_{\ge 0}+... \ge \frac{\ln(a)}{t}$$
[/mm]
Und das Integral erstreckt sich ja von $1$ bis $n$, d.h. die Integrationsvariable $t$ ist bei [mm] $\int_{1}^{n}$ [/mm] stets [mm] $\ge [/mm] 1$ (und damit insbesondere $>0$).
Gruß,
Marcel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 02:34 Fr 11.07.2008 | Autor: | moomann |
Danke für die Mühe. Ich bin überzeugt. Mein Ansatz wurde mir als Tipp gegeben und sollte wohl auch ganz gut funktionieren.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 02:44 Fr 11.07.2008 | Autor: | Marcel |
Hallo Moomann,
> Danke für die Mühe. Ich bin überzeugt. Mein Ansatz wurde
> mir als Tipp gegeben und sollte wohl auch ganz gut
> funktionieren.
ähm, ja, der Satz Reihe konvergiert genau dann, wenn Supremum... (Du weißt, welchen ich meine) wurde ja angewendet. Ich habe mich ja nur darum gekümmert, warum das Supremum über die Integrale den Wert [mm] $\infty$ [/mm] annimmt (m.a.W.: Mithlfe Deines Satzes und meinen Überlegungen divergiert die zu untersuchende Reihe.).
Dieses Doppelintegral in Deiner Rechnung hat mir einfach nicht gefallen (und da wollte ich mir auch keine weiteren Gedanken zu machen).
Ehrlich gesagt habe ich mir einfach mal ein paar Graphen der Form [mm] $a^{\frac{1}{x}}-1$ [/mm] angeguckt und die sahen mir sehr ähnlich wie der Graph von [mm] $\frac{1}{x}$ [/mm] aus. Und wenn man [mm] $a^{\frac{1}{t}}-1=\exp\left(\frac{\ln(a)}{t}\right)-1$ [/mm] schreibt und dann an die Reihenentwicklung von [mm] $\exp(\cdot)$ [/mm] denkt, ist es naheliegend, wenigstens mal zu versuchen, so vorzugehen, wie ich es getan habe. Und am Ende hat sich herausgestellt:
Wunderbar: Klappt
Vll. ist die Musterlösung, die man Euch präsentiert, komplizierter, und da Du meinen Weg ja anscheinend nachvollziehen kannst, wäre es sicherlich interessant für Dich, das mal vorzurechnen. Aber nur, wenn es wirklich im Vergleich zu Musterlösung wesentlich einfacher ist
Und musste natürlich auch nicht machen
Gruß,
Marcel
|
|
|
|