Integral mit Ober-/Untersumme < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:53 Mo 18.06.2012 | Autor: | bammbamm |
Aufgabe | Es sei y > 0 und f: [0,y] [mm] \to \IR: [/mm] x [mm] \mapsto x^3. [/mm] Berechnen Sie mittels Ober- und Untersummen [mm] \integral_{0}^{y}{f(x) dx}
[/mm]
Wählen Sie dabei die Partitionen so, dass der Abstand zwischen zwei benachbarten Teilungspunkten immer gleich ist. |
Ich berechne ja die Ober- bzw. Untersumme wie folgt:
[mm] S_n=\summe_{i=0}^{n-1}=M_i*\bruch{b-a}{n}
[/mm]
[mm] s_n=\summe_{i=0}^{n-1}=m_i*\bruch{b-a}{n}
[/mm]
Wobei meine Werte hier a=0, b=y wären.
Nun ist ja [mm] m_i \le [/mm] f(x) [mm] \le M_i [/mm] wobei [mm] m_i [/mm] absolutes Minimum und [mm] M_i [/mm] absolutes Maximum je Teilintervall ist.
Wie bestimme ich nun aber [mm] M_i [/mm] und [mm] m_i [/mm] ? Und was ist mit den gleichen Abständen zwischen zwei Teilungspunkten gemeint ? Ich hätte für n einfach n=10 gewählt. Dann sind die Abstände doch automatisch die selben ?
|
|
|
|
Hallo,
> Es sei y > 0 und f: [0,y] [mm]\to \IR:[/mm] x [mm]\mapsto x^3.[/mm] Berechnen
> Sie mittels Ober- und Untersummen [mm]\integral_{0}^{y}{f(x) dx}[/mm]
>
> Wählen Sie dabei die Partitionen so, dass der Abstand
> zwischen zwei benachbarten Teilungspunkten immer gleich
> ist.
> Ich berechne ja die Ober- bzw. Untersumme wie folgt:
>
> [mm]S_n=\summe_{i=0}^{n-1}=M_i*\bruch{b-a}{n}[/mm]
> [mm]s_n=\summe_{i=0}^{n-1}=m_i*\bruch{b-a}{n}[/mm]
>
> Wobei meine Werte hier a=0, b=y wären.
> Nun ist ja [mm]m_i \le[/mm] f(x) [mm]\le M_i[/mm] wobei [mm]m_i[/mm] absolutes Minimum
> und [mm]M_i[/mm] absolutes Maximum je Teilintervall ist.
>
> Wie bestimme ich nun aber [mm]M_i[/mm] und [mm]m_i[/mm] ? Und was ist mit den
> gleichen Abständen zwischen zwei Teilungspunkten gemeint ?
> Ich hätte für n einfach n=10 gewählt. Dann sind die
> Abstände doch automatisch die selben ?
n ist nur die Anzahl der Streifen. Erst wenn du die Breite mit [mm] \bruch{b-a}{n} [/mm] wählst, sind diese auch gleich breit.
Zu deiner Frage bezüglich Supremum und Infimum: nutze in diesem Fall aus, dass du es mit einer streng monotonen Funktion zu tun hast! Wo muss dan bzgl. eines Streifens das Minimum, wo das Maximum angenommen werden?
Gruß, Diophant
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:03 Mo 18.06.2012 | Autor: | bammbamm |
> n ist nur die Anzahl der Streifen. Erst wenn du die Breite
> mit [mm]\bruch{b-a}{n}[/mm] wählst, sind diese auch gleich breit.
>
> Zu deiner Frage bezüglich Supremum und Infimum: nutze in
> diesem Fall aus, dass du es mit einer streng monotonen
> Funktion zu tun hast! Wo muss dan bzgl. eines Streifens das
> Minimum, wo das Maximum angenommen werden?
>
>
> Gruß, Diophant
>
Da [mm] f(x)=x^3 [/mm] für [mm] x\in[0,y], [/mm] y>0 streng monoton wachsend ist, muss [mm] m_i [/mm] jeweils am linken Rand des Intervalls, und [mm] M_i [/mm] am rechten Rand des Intervalls sein.
b-a (für a=0 und b=y) beschreibt doch aber mein komplettes Intervall ? Teile ich dieses in n=10 Streifen, so sind doch die Breiten der Streifen trotzdem alle gleich ?
|
|
|
|
|
Hallo,
> Da [mm]f(x)=x^3[/mm] für [mm]x\in[0,y],[/mm] y>0 streng monoton wachsend
> ist, muss [mm]m_i[/mm] jeweils am linken Rand des Intervalls, und
> [mm]M_i[/mm] am rechten Rand des Intervalls sein.
Ja, genau so ist es.
> b-a (für a=0 und b=y) beschreibt doch aber mein
> komplettes Intervall ? Teile ich dieses in n=10 Streifen,
> so sind doch die Breiten der Streifen trotzdem alle gleich
> ?
Du hast hier eine falsche Vorstellung von 'Teilen'. Allgemein leitet man ein Riemann-Integral über eine Riemann-Zerlegung her. Diese ist i.a. nicht äquidistant, das was du hier machen sollst, ist eben ein Spezialfall, der nicht automatisch eintritt. Wenn du aber die Breite so wählst, wie ich es dir geschrieben ahbe, dann werden die Streifen gleich breit.
Gruß, Diophant
|
|
|
|