www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integral mit Parametern
Integral mit Parametern < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral mit Parametern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:00 So 19.09.2010
Autor: allamaja

Aufgabe
Bestimme aufgrund der geometrischen Definition.
[mm] d)\integral_{1}^{5}{f(-3x+8) dx} [/mm]

Hallo,

da wir gerade erst mit dem Thema Integralrechnung angefangen haben, habe ich eine wahrscheinlich sehr simple Frage: Wie berechne ich den Integral, wenn ich bei f(x) eine Funktion mit Parametern habe?

lg

        
Bezug
Integral mit Parametern: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 So 19.09.2010
Autor: schachuzipus

Hallo allamaja,


> Bestimme aufgrund der geometrischen Definition.
>  [mm]d)\integral_{1}^{5}{f(-3x+8) dx}[/mm]

Das ist schlecht geschrieben, das [mm]f[/mm] hat da nix zu suchen!

Gemeint ist [mm]\int\limits_{1}^{5}{(-3x+8) \ dx}[/mm]

>  Hallo,
>  
> da wir gerade erst mit dem Thema Integralrechnung
> angefangen haben, habe ich eine wahrscheinlich sehr simple
> Frage: Wie berechne ich den Integral, wenn ich bei f(x)
> eine Funktion mit Parametern habe?

Du hast hier doch gar keine Funktion mit Parametern ?!

Die Funktion [mm]f[/mm] hängt nur von der Variablen x ab, nach der auch integriert werden soll.

Du berechnest hier also das Integral ganz normal.

Integriere summandenweise ...

Wenn du eine Funktion mit Parametern hast, so behandelst du diese als additive oder multiplikative Konstante, je nachdem wie die Funktion aussieht.

Vllt. gibst du mal ein Bsp., so dass man deine Frage besser klären kann.

Möglicherweise meinst du ja auch keine Funktionen mit Parametern?!

Nebenbei steht ganz oben: Berechnen Sie ... mit der geometrischen Definition.

Damit sind möglicherweise Ober- und Untersummen gemeint, aber das solltest du uns mal näher verklickern.



>  
> lg

Gruß

schachuzipus


Bezug
                
Bezug
Integral mit Parametern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:16 So 19.09.2010
Autor: allamaja

Hallo, danke für die rasche Antwort!

Ja stimmt, ich hab die Aufgabenstellung etwas falsch geschrieben, muss natürlich ohne f sein
also [mm] \integral_{1}^{5}{(-3x+8) dx} [/mm]

Also bei uns war das so, dass wir so Formeln für bestimmte Funktionen hatten, also für [mm] \integral_{a}^{b}{x^3 dx}=\bruch{b^4}{4}-\bruch{a^4}{4} [/mm]

Und dasselbe für 1, x, [mm] x^2,x^3 [/mm] usw.
Wie berechne ich das denn dann, wenn ich nicht nur x da stehen habe, sondern -3x+8?

Bezug
                        
Bezug
Integral mit Parametern: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 So 19.09.2010
Autor: schachuzipus

Hallo nochmal,


> Hallo, danke für die rasche Antwort!
>  
> Ja stimmt, ich hab die Aufgabenstellung etwas falsch
> geschrieben, muss natürlich ohne f sein
> also [mm]\integral_{1}^{5}{(-3x+8) dx}[/mm]
>  
> Also bei uns war das so, dass wir so Formeln für bestimmte
> Funktionen hatten, also für [mm]\integral_{a}^{b}{x^3 dx}=\bruch{b^4}{4}-\bruch{a^4}{4}[/mm]

Ah, ok, jetzt weiß ich, was du meinst ... ;-)

Hier hast du konkrete Grenzen [mm]a=1, b=5[/mm]

>  
> Und dasselbe für 1, x, [mm]x^2,x^3[/mm] usw.
> Wie berechne ich das denn dann, wenn ich nicht nur x da
> stehen habe, sondern -3x+8?

Naja, es ist doch [mm]-3\cdot{}x+8=-3\cdot{}\red{x^1}+8\cdot{}\blue{x^0}[/mm]

Damit [mm]\int\limits_{a}^{b}{(-3x+8) \ dx}=-3\cdot{}\int\limits_{a}^{b}{x^1 \ dx}+8\cdot{}\int\limits_{a}^{b}{x^0 \ dx}[/mm]

Klappt's damit?

LG

schachuzipus


Bezug
                                
Bezug
Integral mit Parametern: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:36 So 19.09.2010
Autor: allamaja

Aahh, super vielen Dank, das leuchtet ein :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]