www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Fr 14.08.2009
Autor: hamma

Hallo, ich habe ein integral berechnet und weiß net ob meine rechnung stimmt weil mein integralrechner ein anderes ergebnis zeigt...jetzt würde ich gerne mein fehler wissen oder mein integralrechner zeigt das falsche ergebnis, bin mir net sicher.

[mm] \integral_{a}^{b}{\bruch{1}{x^2-2x+3} dx} [/mm] =  [mm] \integral_{a}^{b}{\bruch{1}{x^2-2x+3+2-2} dx} [/mm] = [mm] \integral_{a}^{b}{\bruch{1}{(x-1)^2+2} dx} [/mm] = [mm] \bruch{1}{2}\integral_{a}^{b}{\bruch{1}{(\bruch{x-1}{\wurzel{2}})^2+1} dx} [/mm] = [mm] \bruch{1}{2} \integral_{a}^{b}{\bruch{1}{z^2+1} dx} [/mm] = [mm] \bruch{1}{2}arctan \bruch{x-1}{\wurzel{2}}+C [/mm]

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:20 Fr 14.08.2009
Autor: schachuzipus

Hallo Markus,

> Hallo, ich habe ein integral berechnet und weiß net ob
> meine rechnung stimmt weil mein integralrechner ein anderes
> ergebnis zeigt...jetzt würde ich gerne mein fehler wissen
> oder mein integralrechner zeigt das falsche ergebnis, bin
> mir net sicher.
>  
> [mm] $\integral_{a}^{b}{\bruch{1}{x^2-2x+3} dx}$ [/mm]  
> [mm] $=\integral_{a}^{b}{\bruch{1}{x^2-2x+3+2-2} dx}$ [/mm]
> [mm] $=\integral_{a}^{b}{\bruch{1}{(x-1)^2+2} dx}$ [/mm]
> [mm] $=\bruch{1}{2}\integral_{a}^{b}{\bruch{1}{(\bruch{x-1}{\wurzel{2}})^2+1} dx}$ [/mm]
> [mm] $=\bruch{1}{2} \integral_{a}^{b}{\bruch{1}{z^2+1} d\red{z}}$ [/mm]

Hier passt es nicht mehr. Wenn du [mm] $z=\frac{x-1}{\sqrt{2}}$ [/mm] substituierst, so ist [mm] $\frac{dz}{dx}=\frac{1}{\sqrt{2}}$ [/mm] Also [mm] $dx=\sqrt{2}\cdot{}dz$ [/mm]

Damit bekommst du [mm] $\frac{\sqrt{2}}{2}\int{\frac{1}{z^2+1} \ dz}=\frac{\sqrt{2}}{2}\arctan(z) [/mm] \ + \ [mm] C=\frac{\sqrt{2}}{2}\arctan\left(\frac{x-1}{\sqrt{2}}\right) [/mm] \ + \ C$

Wenn du magst, kannst du [mm] $\frac{\sqrt{2}}{2}$ [/mm] noch schreiben als [mm] $\frac{1}{\sqrt{2}}$ [/mm]

> [mm]\bruch{1}{2}arctan \bruch{x-1}{\wurzel{2}}+C[/mm]  


LG

schachuzipus

Bezug
                
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Fr 14.08.2009
Autor: schachuzipus

Ach noch etwas:

Wenn du es wirklich mit Grenzen rechnen sollst, musst du die mitsubstituieren oder komplett ohne Grenzen rechnen und dann am Ende die "alten" Grenzen hernehmen.

Gruß

schachuzipus

Bezug
                
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:33 Fr 14.08.2009
Autor: hamma

aja, ok.merci.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]