www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integralrechnung
Integralrechnung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Idee
Status: (Frage) für Interessierte Status 
Datum: 15:50 Di 08.09.2009
Autor: pueppiii

Aufgabe
Lösen des Integrals [mm] \bruch{1}{Z(t)} \integral_{0}^{n_{max}}{ n [ 1 - \bruch{1}{1-q)} \bruch{(n-u(t))}{Z(t)^{1-q}}] ^{\bruch{q}{1-q}} dn} [/mm]

Das angegebene Ergebnis ist [mm] \bruch{t^{2}Z(t)^{1-2q}}{2-q}[ [/mm] 1+ [mm] \bruch{(1-q)u}{t(Z(t))^{1-q}}]^\bruch{2-q}{1-q} [/mm]

Ich hatte schon mal so ein ähnliches Integral berechnet, jedoch bin ich mir unsicher wegen dem n vor der großen Klammer?
Kann ich das Integral spalten? Oder wie kann man mit dem n umgehen?

Würde dann den Klammerausdruck wieder vereinfachen in   [mm] \integral_{0}^{n_{max}}{an+c dn} [/mm] und dann substituieren, v:= an+c!!!
Jedoch komme ich dann nicht auf die oben gegebene Lösung bzw. wohlmöglich ist die Umformung bloss nicht korrekt!!?

Vielen Dank für eure Hilfe!!!


Sorry, ist wohl in der falschen Untergliederung gelandet, muss natürlich unter Hochschulmathe/ Uni Analysis/ Integrationstheorie

Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]