Integration < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:02 Mo 17.04.2006 | Autor: | jase |
Hallo zusammen,
ich habe versucht die Integrale 1. [mm] \integral_{1}^{-1}{sinx dcosx} [/mm] und 2. [mm] \integral_{2\pi}^{0}{ e^{acosx} dx} [/mm] , [mm] a\inR [/mm] zu lösen.
Zu 1. : Wenn ich [mm] \integral_{1}^{-1}{cosx dcosx} [/mm] hätte, könnte ich substituieren: cosx=u [mm] \Rightarrow \integral_{1}^{-1}{cosx dcosx}=\integral_{1}^{-1}{u du}=(1²/2) [/mm] - ((-1)²/2)=0. Wie aber löse ich Integral 1.? Ich habe es mit [mm] sinx=cos(x-\pi/2) [/mm] versucht. Ich erhalte dann, wenn ich mich nicht vertan habe, [mm] (1-\pi/2)²/2 [/mm] - [mm] (-1-\pi/2)²/2=\pi²
[/mm]
Zu 2. : [mm] \integral_{2\pi}^{0}{ e^{ax} dx} [/mm] könnte ich lösen: [mm] \integral_{2\pi}^{0}{ e^{ax} dx}=[e^{ax}/a]^{2\pi}_0. [/mm] Was aber ist die Stammfunktion zu [mm] e^{acosx}?
[/mm]
|
|
|
|
> Hallo zusammen,
> ich habe versucht die Integrale 1.
> [mm]\integral_{1}^{-1}{sinx dcosx}[/mm] und 2. [mm]\integral_{2\pi}^{0}{ e^{acosx} dx}[/mm]
> , [mm]a\inR[/mm] zu lösen.
> Zu 1. : Wenn ich [mm]\integral_{1}^{-1}{cosx dcosx}[/mm] hätte,
> könnte ich substituieren: cosx=u [mm]\Rightarrow \integral_{1}^{-1}{cosx dcosx}=\integral_{1}^{-1}{u du}=(1²/2)[/mm]
> - ((-1)²/2)=0. Wie aber löse ich Integral 1.? Ich habe es
> mit [mm]sinx=cos(x-\pi/2)[/mm] versucht. Ich erhalte dann, wenn ich
> mich nicht vertan habe, [mm](1-\pi/2)²/2[/mm] - [mm](-1-\pi/2)²/2=\pi²[/mm]
> Zu 2. : [mm]\integral_{2\pi}^{0}{ e^{ax} dx}[/mm] könnte ich lösen:
> [mm]\integral_{2\pi}^{0}{ e^{ax} dx}=[e^{ax}/a]^{2\pi}_0.[/mm] Was
> aber ist die Stammfunktion zu [mm]e^{acosx}?[/mm]
Also folgendes:
Man kann das erste Integral auf mindestens 2 Arten interpretieren:
1.) Als Riemann-Stieltjessches Integral:
wenn ich habe: [mm] [mm] \integral_{-1}^{1}{sinx dcosx}
[/mm]
ich glaube da muss eines von den beiden (sin und cos) stetig sein und das andere von beschränkter schwankung aber ich bin mir nicht völlig sicher. Dann kannst du einfasch schreiben, dass das obige Integral gleich ist mit: [mm] \integral_{-1}^{1}{sin(x)*(cos(x))' dx} [/mm] also du ziehst den cosinus einfach mit seiner Ableitung zum Integranden hinein und dann integrierst du nurnoch [mm] sin^2(x) [/mm] aus.
2.) Als Lebesgue-Integral:
Ich weiß allerdings nicht ob du sowas gemacht hast.
Hier kannst du es auf jeden Fall interpretieren als Integral bei dem das Maß einfach die Verteilungsfunktion (in diesem Fall cosx) ist. Dann bestimmst du dir die Radon-Nikodym-Ableitung (in diesem Fall sinx) und die ganze Sache geht analog zu 1.)
Die Stammfunktion von [mm]e^{acosx}[/mm] könntest du dir vielleicht bestimmen, indem du den Ausdruck wieder als Integral darstellst.
Du führst eine Integrationsvariable y ein und hast dann ein Doppelintegral mit a als obere Grenze (bei dem nach y zu integrierenden teil) und dann könntest du versuchen, die Integrationsreihenfolge zu vertauschen. Wenn das nicht geht, wäre es evtl. noch möglich zu versuchen, unter dem Integral nach a zu differenzieren, das ganze dann nach x zu integrieren, dann unbestimmt wieder nach a zu integrieren und dann die Konstante zu bestimmen indem du einfach im ursprünglichen Integral z.b. a=0 setzt und es dann berechnest.
Die beiden Methoden sind aber ziemlich heikel, da die Vertauschungen zu begründen sind (die Vertauschung der Integrationsreihenfolge bzw. das "Differenzieren unter dem Integral"). Auf die Kriterien für diese Vertauschung möchte ich im Moment aber nicht genauer eingehen (Da muss immer irgendetwas gleichmäßig konvergieren. Bei Uneigentlichen Integralen kommen da noch ein paar Voraussetzungen hinzu.) Im Allgemeinen ist das Nachweisen dieser Veraussetzungen jedoch wesentlich umständlicher als die Berechnung des Integrals selbst.
Ich hoffe das konnte dir ein bisschen helfen
Mfg
Michael
|
|
|
|