Integration Vektoren < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:18 Di 13.07.2010 | Autor: | qsxqsx |
Hallo,
Ich wäre froh auf einen Tipp wie ich auf die richtige Lösung komme, die ich schon habe. Ich bin ziemlich ideenlos bei dieser Aufgabe und sehe keine Möglichkeit selber auf die Lösung zu kommen, selbst wenn ich die ganze Zeit die Lösung anstarre.
Es ist eigentlich eine Physik aufgabe (keine Ahnung in welches Verzeichnis die Aufgabe soll, aber ich habe Probleme beim Integrieren).
Ich habe das E-Feld mit
[mm] \vec{E(\vec{r}) }= \bruch{Q*R_{b}^{2}}{A*\varepsilon}*\bruch{\vec{r} - \vec{r}_{b}}{|\vec{r} - \vec{r}_{b}|^{3}}
[/mm]
--->
[mm] \vec{Pot(\vec{r}) }= \bruch{Q*R_{b}^{2}}{A*\varepsilon}*\integral_{}^{}{\bruch{\vec{r} - \vec{r}_{b}}{|\vec{r} - \vec{r}_{b}|^{3}}}
[/mm]
gegeben. ...Und soll nun das Potential bestimmen.
Die Lösung:
[mm] \vec{Pot(\vec{r}) } [/mm] = [mm] \bruch{Q*R_{b}^{2}}{A*\varepsilon}*(\bruch{1}{|\vec{r} - \vec{r}_{b}|} [/mm] - [mm] \bruch{1}{R_{b}}) [/mm] + C
Ich habe erstens NuLL Ahnung wie ich da vorgehe beim Integrieren, obwohl ich weiss, dass man bei einem Vektor jede Komponente einzeln ableitet/integriert. Das bringt mir hier, so denke ich wenig. Ausserdem finde ich den Faktor - [mm] \bruch{1}{R_{b}} [/mm] in der Lösung merkwürdig. [mm] R_{b} [/mm] ist ein konstanter Radius einer Kugel und sollte somit nicht nacher im Integrierten Teil vorkommen.
Ich weiss nicht ob ich die ganze Aufgabe posten muss, oder ob das so reicht.
Ich habs versucht und [mm] \vec{r} [/mm] einfach als eine Normale Variable betrachtet, den Rest als Konstanten und integriert. Hat aber nicht das erhoffte erbracht.
Ich weiss echt nicht weiter:(
Gruss Qsxqsx
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:54 Di 13.07.2010 | Autor: | rainerS |
Hallo!
> Hallo,
>
> Ich wäre froh auf einen Tipp wie ich auf die richtige
> Lösung komme, die ich schon habe. Ich bin ziemlich
> ideenlos bei dieser Aufgabe und sehe keine Möglichkeit
> selber auf die Lösung zu kommen, selbst wenn ich die ganze
> Zeit die Lösung anstarre.
> Es ist eigentlich eine Physik aufgabe (keine Ahnung in
> welches Verzeichnis die Aufgabe soll, aber ich habe
> Probleme beim Integrieren).
>
> Ich habe das E-Feld mit
>
> [mm]\vec{E(\vec{r}) }= \bruch{Q*R_{b}^{2}}{A*\varepsilon}*\bruch{\vec{r} - \vec{r}_{b}}{|\vec{r} - \vec{r}_{b}|^{3}}[/mm]
>
> --->
>
> [mm]\vec{Pot(\vec{r}) }= \bruch{Q*R_{b}^{2}}{A*\varepsilon}*\integral_{}^{}{\bruch{\vec{r} - \vec{r}_{b}}{|\vec{r} - \vec{r}_{b}|^{3}}}[/mm]
Dsa stimmt so nicht. Das Potential ist kein Vektor, und das Integral rechts ist ein Wegintegral:
[mm]\Phi(\vec{r}) }= - \bruch{Q*R_{b}^{2}}{A*\varepsilon}*\integral_{\vec{r}_0}^{\vec{r}}{\bruch{\vec{r} - \vec{r}_{b}}{|\vec{r} - \vec{r}_{b}|^{3}}}*d\vec{s} [/mm]
>
> gegeben. ...Und soll nun das Potential bestimmen.
>
> Die Lösung:
>
> [mm]\vec{Pot(\vec{r}) } = \bruch{Q*R_{b}^{2}}{A*\varepsilon}*(\bruch{1}{|\vec{r} - \vec{r}_{b}|} - \bruch{1}{R_{b}}) + C[/mm]
> Ich habe erstens NuLL Ahnung wie ich da vorgehe beim
> Integrieren, obwohl ich weiss, dass man bei einem Vektor
> jede Komponente einzeln ableitet/integriert. Das bringt mir
> hier, so denke ich wenig. Ausserdem finde ich den Faktor -
> [mm]\bruch{1}{R_{b}}[/mm] in der Lösung merkwürdig. [mm]R_{b}[/mm] ist ein
> konstanter Radius einer Kugel und sollte somit nicht nacher
> im Integrierten Teil vorkommen.
Irrelevant, da das Potential immer nur bis auf einen frei wählbaren konstanten Summanden bestimmt ist. Ob du [mm] $\bruch{1}{R_{b}}$ [/mm] hinschreibst oder in die Konstante C einsteckst ist reine Konvention.
> Ich weiss nicht ob ich die ganze Aufgabe posten muss, oder
> ob das so reicht.
>
> Ich habs versucht und [mm]\vec{r}[/mm] einfach als eine Normale
> Variable betrachtet, den Rest als Konstanten und
> integriert. Hat aber nicht das erhoffte erbracht.
Wie geschrieben, ist das ein Wegintegral. Erst einmal ist der Gradient
[mm] \vec{\nabla} \bruch{1}{|\vec{r} - \vec{r}_{b}|} = - \bruch{\vec{r} - \vec{r}_{b}}{|\vec{r} - \vec{r}_{b}|^3} [/mm]
(lässt sich leicht explizit nachrechnen).
Für jedes Wegintegral über ein Gradientenfeld [mm] $\vec{\nabla} [/mm] V(r)$ gilt per Definition des Wegintegrals
[mm] \integral_{\vec{s}_1}^{\vec{s}_2} \vec{\nabla} V(r)*d\vec{s} = V(\vec{s}_2) -V(\vec{s}_1) [/mm] .
Daher ist
[mm] \integral_{\vec{r}_0}^{\vec{r}}\bruch{\vec{r} - \vec{r}_{b}}{|\vec{r} - \vec{r}_{b}|^3} *d\vec{s} = - \integral_{\vec{r}_0}^{\vec{r}}\vec{\nabla} \bruch{1}{|\vec{r} - \vec{r}_{b}|}*d\vec{s} = - \left(\bruch{1}{|\vec{r} - \vec{r}_{b}|} - \bruch{1}{|\vec{r}_0 - \vec{r}_{b}|}\right) [/mm]
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 02:08 Di 13.07.2010 | Autor: | qsxqsx |
Abend Rainer,
Danke danke... das mit dem Gradienten muss ich noch nachrechnen. Das mit dem Potential als Vektor war völliger quatsch, das ist mir eigentlich klar, war hald um die Zeit schon spät...
Gruss
|
|
|
|