Integration auf Kreisscheibe < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:23 Di 08.04.2008 | Autor: | Zorba |
Aufgabe | Integration von [mm] x^{4} [/mm] über der offenen Einheitskreisscheibe |
Habe es mit der Transformationsformel angefangen:
[mm] \integral_{E}{x^{4}} [/mm] = [mm] \integral_{0}^{1}\integral_{0}^{2\pi}{r^{4}(cos\theta)^{4}r d\theta dr}
[/mm]
Stimmt das soweit?
|
|
|
|
Hi,
> Integration von [mm]x^{4}[/mm] über der offenen
> Einheitskreisscheibe
> Habe es mit der Transformationsformel angefangen:
> [mm]\integral_{E}{x^{4}}[/mm] =
> [mm]\integral_{0}^{1}\integral_{0}^{2\pi}{r^{4}(cos\theta)^{4}r d\theta dr}[/mm]
>
> Stimmt das soweit?
Leider nicht, denn:
Sei $f : [mm] \IR \to \IR [/mm] , x [mm] \mapsto [/mm] f(x) = [mm] x^4$.
[/mm]
Ein Punkt in der offenen Kreisscheibe kann man beschreiben durch:
[mm] $\sigma [/mm] : [0,1) [mm] \times [0,2\pi) \to \IR^2 [/mm] , [mm] (r,\theta) \mapsto \sigma(r,\theta) [/mm] = (r [mm] cos(\theta),r sin(\theta) [/mm] )$ . Dann ist die Ableitung [mm] $\sigma'$ [/mm] von [mm] $\sigma$ [/mm] gegeben durch
[mm] $\sigma'(r,\theta) [/mm] = [mm] \pmat{ cos(\theta) & -r sin(\theta) \\ sin(\theta) & r cos(\theta) }$, [/mm] und die Determinante davon ist [mm] $|\sigma'(r,\theta)| [/mm] = r$. Dann ist
$f(x) = [mm] f(\sigma(r,\theta)) [/mm] = |(r [mm] cos(\theta),r sin(\theta) )|^4$ [/mm] .
Nun setzten wir das in das Integral ein unter Benutzung der Transformationsregel:
[mm] $\integral_{E}{x^{4}} [/mm] = [mm] \integral_{0}^{1}\integral_{0}^{2\pi} f(\sigma(r,\theta)) \cdot |\sigma'(r,\theta)| d\theta [/mm] dr = [mm] \integral_{0}^{1}\integral_{0}^{2\pi} r^4 \cdot [/mm] r [mm] d\theta [/mm] dr = [mm] \cdots [/mm] $
Gruss,
logarithmus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:18 Di 08.04.2008 | Autor: | Zorba |
Ah...danke!!
|
|
|
|
|
Hallo!
Sofern es eigentlich [mm] $f(\vec x)=\vec x^4$ [/mm] heißt, hast du recht. Ich sehe allerdings nirgends einen Vektorpfeil, und gehe daher davon aus, daß tatsächlich [mm] f(x,y)=f(x)=x^4 [/mm] gemeint ist. In diesem Fall ist Zorbas Formel doch korrekt!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:10 Di 08.04.2008 | Autor: | Zorba |
Ja es ist kein Vektor gemeint....wie mache ich dann aber weiter, bzw. kann ich dieses Integral leicht berechnen?
|
|
|
|