www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integration mit Polarkoordinat
Integration mit Polarkoordinat < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration mit Polarkoordinat: Parametrisierung + Integration
Status: (Frage) beantwortet Status 
Datum: 20:34 Mo 29.06.2015
Autor: egon111

Aufgabe
Integriere mit Hilfe von Polarkoordinaten [mm] \integral_{0}^{2}{\integral_{0}^{\wurzel{2x-x^{2}}}{\wurzel{x^{2}+y^{2} }dy}dx} [/mm]

Es wird über die Halbkreisfläche mit x=1+r*cos(h), y=r*sin(h) ; 0<=r<=1 und 0<=h<=Pi [mm] integriert.\integral_{0}^{pi}{ \integral_{0}^{1}{r*\wurzel{2}*\wurzel{r*cos(h)+1}dr}dh}, [/mm] wobei [mm] 2*x=x^{2}+y^{2} [/mm] ist und r ist die Funktionaldeterminate für den Koordinatenwechsel. Ist das richtig? Falls ja, gibt es eine bessere Parametrisierung? Und wenn nicht, wie integriert man das?

Hier, falls alles richtig war ,stecke ich fest Substitution mit [mm] \wurzel{r*cos(h)+1}=t [/mm]   , [mm] 1<=t<=\wurzel{cos(h)+1}, \integral_{0}^{Pi}{\bruch{2\wurzel{2}}{cos(h)^{2}}\integral_{1}^{\wurzel{cosh+1}}{t^{4}-t^{2}dt}dh}=sehr [/mm] hässlich....
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Vielen Dank im Voraus

        
Bezug
Integration mit Polarkoordinat: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:15 Mo 29.06.2015
Autor: egon111

Aus Perspektive des Koordinatenursprunges gilt(sollte gelten) x=cos(h), y=sin(h) und [mm] \integral_{0}^{pi/2}{\integral_{0}^{2cos(h)}{r*\wurzel{2rcos(h)}dr}dh} [/mm]

das sollte einfacher gehen...? Ist das äquivalent?

Bezug
                
Bezug
Integration mit Polarkoordinat: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:51 Mo 29.06.2015
Autor: Chris84


> Aus Perspektive des Koordinatenursprunges gilt(sollte
> gelten) x=cos(h), y=sin(h) und
> [mm]\integral_{0}^{pi/2}{\integral_{0}^{2cos(h)}{r*\wurzel{2rcos(h)}dr}dh}[/mm]
>  
> das sollte einfacher gehen...? Ist das äquivalent?

Kommt zumindest das gleiche raus ;) :)

Bezug
        
Bezug
Integration mit Polarkoordinat: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Mo 29.06.2015
Autor: Chris84


> Integriere mit Hilfe von Polarkoordinaten
> [mm]\integral_{0}^{2}{\integral_{0}^{\wurzel{2x-x^{2}}}{\wurzel{x^{2}+y^{2} }dy}dx}[/mm]
>  
> Es wird über die Halbkreisfläche mit x=1+r*cos(h),
> y=r*sin(h) ; 0<=r<=1 und 0<=h<=Pi

Das ist nicht sofort einsichtig. Hab's geplottet. Stimmt. Sollte man aber vlt. noch das ein oder andere Wort zu schreiben ;)

> [mm]integriert.\integral_{0}^{pi}{ \integral_{0}^{1}{r*\wurzel{2}*\wurzel{r*cos(h)+1}dr}dh},[/mm]
> wobei [mm]2*x=x^{2}+y^{2}[/mm] ist und r ist die
> Funktionaldeterminate für den Koordinatenwechsel. Ist das
> richtig? Falls ja, gibt es eine bessere Parametrisierung?

Sieht gut aus. Wuerde ich auch so machen. (Wenngleich die Parametrisiering nicht mainstream ist, aber wer will das schon ^^ )

> Und wenn nicht, wie integriert man das?
>  
> Hier, falls alles richtig war ,stecke ich fest Substitution
> mit [mm]\wurzel{r*cos(h)+1}=t[/mm]   , [mm]1<=t<=\wurzel{cos(h)+1}, \integral_{0}^{Pi}{\bruch{2\wurzel{2}}{cos(h)^{2}}\integral_{1}^{\wurzel{cosh+1}}{t^{4}-t^{2}dt}dh}=sehr[/mm]

Beim Rueberschauen sieht das auch ok aus. So haesslich wird das nicht.
Bedenke, dass $ -1/3 [mm] t^3+1/5t^5=t\cdot(-1/3 t^2+ [/mm] 1/5 [mm] t^4) [/mm] ist. Wenn man nun die Wurzel einsetzt, wird der Ausdruck in der Klammer doch recht harmlos.

Habe das $r$ Integral mal in Mathematica reingekloppt. Es ist (zur Kontrolle):

[mm] $\int\limits_{r=0}^1 r\sqrt{r\cos(h)+1}dr=\frac{4+\sqrt{1+\cos(h)}(-1+2\cos(h)+3\cos(2h))}{15\cos^2(h)} [/mm]

Sieht mir ziemlich danach aus, als ob du kurz davor waerst :)


> hässlich....
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Vielen Dank im Voraus

Gruss,
Chris

Bezug
                
Bezug
Integration mit Polarkoordinat: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:56 Di 30.06.2015
Autor: egon111

Danke Chris für deine Antwort.  [mm] $\int\limits_{r=0}^1 r\sqrt{r\cos(h)+1}dr=\frac{4+\sqrt{1+\cos(h)}(-1+2\cos(h)+3\cos(2h))}{15\cos^2(h)} [/mm] Ok, aber ab hier wird es aufwändig.Mit Substitution [mm] \wurzel{1+cos(h)} [/mm] kann man alles auflösen. Aber dann muss man alles in Partialbrüche zerlegen.....
Bei dem zweiten Ansatz wurde es einfacher und [mm] \bruch{32}{15} [/mm] kam raus.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]