www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integration über Dreieck
Integration über Dreieck < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration über Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:18 Fr 03.12.2010
Autor: Salamence

Aufgabe
Sei [mm] D:=\{\vektor{x\\y}\in\IR^{2}|x,y\ge0; y\le 1-x\} [/mm] und sei [mm] f:[0,1]\to\IR [/mm] stetig. Zeigen Sie für m, [mm] n\in\IN: [/mm]

[mm] \integral_{D}f(x+y)x^{m}y^{n}d\vektor{x\\y}=\bruch{m!*n!}{(n+m+1)!}\integral_{0}^{1}f(t)*t^{m+n+1}dt [/mm]


Huhu!

Das einzige, was mir bis jetzt eingefallen ist, wie man das linke Integral umschreiben könnte ist:

[mm] \integral_{D}f(x+y)x^{m}y^{n}d\vektor{x\\y}=\integral_{0}^{1}[\integral_{0}^{1-x}f(x+y)x^{m}y^{n}dy]dx [/mm]
Nun hatte ich die Idee t=x+y zu setzen, aber irgendwie scheint das nicht so Recht zu klappen. Und wo sollen da denn überhaupt die Fakultäten herkommen?

        
Bezug
Integration über Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 10:30 Sa 04.12.2010
Autor: Blech

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hi,

> $ \integral_{D}f(x+y)x^{m}y^{n}d\vektor{x\\y}=\integral_{0}^{1}[\integral_{0}^{1-x}f(x+y)x^{m}y^{n}dy]dx $

das kannst Du jetzt substituieren+umformen zu

$\int_0^1\int_0^t f(t) x^m (t-x)^n\ dx\, dt$


das ergibt auf jeden Fall $t^{m+n+1}f(t)$ und da tauchen ne Menge Fakultäten auf, also sieht's nicht schlecht aus für Dein gewünschtes Ergebnis. =)

EDIT: Ja die Fakultäten stimmen. Die benötigte Formel steht sogar auf Wikipedia zum Binomialkoeffizienten, weil $\frac{m!n!}{(m+n+1)!$ ja die Betafunktion B(m+1,n+1) ist.

ciao
Stefan



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]