Inverse Fouriertransformation < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 01:21 Mo 12.07.2010 | Autor: | valoo |
Aufgabe | Die Fouriertranformierte der Funktion [mm] f(x)=exp(-\bruch{|x|}{D}) [/mm] ist [mm] \overline{f}(k)=\bruch{2*D^{-1}}{k^{2}+D^{-2}} (\star)
[/mm]
Nutzen Sie diese Information, um folgende Integrale zu berechnen:
a) [mm] \integral_{-\infty}^{\infty}{\bruch{cos(a*z)}{b^{2}+z^{2}}dz}
[/mm]
b) [mm] \integral_{0}^{\infty}{\bruch{sin(c*z)}{z}dz} [/mm] |
Heyho!
Also, es gilt ja: [mm] f(x)=\integral_{-\infty}^{\infty}{\bruch{1}{2*\pi}*\overline{f}(k)*exp(i*k*x)dk}
[/mm]
Also hab ich versucht, das Integral ein bisschen umzuformen, sodass da etwas in der Form [mm] (\star) [/mm] steht, aber irgendwie krieg ich das nich so ganz hin:
a)
[mm] \integral_{-\infty}^{\infty}{\bruch{cos(a*z)}{b^{2}+z^{2}}dz}=\bruch{1}{2*\pi}*\integral_{-\infty}^{\infty}{\bruch{1}{2*\pi}*[\bruch{cos(a*z)}{b^{2}+z^{2}}*exp(-i*z*x)]*exp(i*z*x)}
[/mm]
Nun muss ja sein:
[mm] \bruch{cos(a*z)}{b^{2}+z^{2}}*exp(-i*z*x)=\bruch{exp(-i*z*(a+x))+exp(i*z*(a-x))}{2*(b^{2}+z^{2})}=^{!}\bruch{2*D^{-1}}{z^{2}+D^{-2}}
[/mm]
Und da ist das Problem, irgendwie find ich kein D, sodass das richtig is...
Der Zähler ist ja auch noch von z abhängig, was sich tunlichst ändern sollte -_-
b)
Genau das gleiche Problem:
[mm] \integral_{0}^{\infty}{\bruch{sin(c*z)}{z}dz}=\bruch{1}{2}*\integral_{-\infty}^{\infty}{\bruch{sin(c*z)}{z}dz}=\pi*\integral_{-\infty}^{\infty}{\bruch{1}{2*\pi}*[\bruch{sin(c*z)}{z}*exp(-i*z*x)]*exp(i*z*x)}
[/mm]
[mm] \bruch{sin(c*z)}{z}*exp(-i*z*x)=\bruch{exp(i*z*(c-x))-exp(-i*z*(c+x))}{2*i*z}=^{!}\bruch{2*D^{-1}}{z^{2}+D^{-2}}
[/mm]
Geh ich das ganze falsch an? Oder muss ich das alles "nur" noch etwas weiter umformen, sodass dat passt?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 02:20 Mi 14.07.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|