Inverse Matrix < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:39 Mi 06.09.2006 | Autor: | Antimon |
Hallo zusammen,
ich bin gerade dabei, Numerik zu lernen und hätte da eine Frage. In meinem Skript steht, dass eine Inverse Matrix beim Newton-Verfahren für Systeme numerisch unbrauchbar sei. Ich versteh aber nicht, warum. KAnn mir da einer weiter helfen? Größtenteils geht man doch immer von regulären Matrizen aus.
Liegt das daran, dass der Fehler zu groß wird. Wäre dankbar für ne ausführliche Antwort.
|
|
|
|
Hallo Antimon!!
Also mein damaliger Numerikprofessor hat bei jedem Verfahren von zu viel Aufwand geredet, d.h. bei jedem numerischen Verfahren versucht man so kurz und geradlinig wie möglich zum Ergebnis zu kommen, vor allem wenn das Problem handschriftlich gelöst wird. Schon das Rechnen von Systemen mit lediglich zwei Gleichungen, verursacht viel Arbeit.
Deshalb behilft man sich methodisch gesehen mit einem kleinen Kniff (x,p und F, F' sind Vektoren bzw. Matrizen - habe die Vektorenstriche weggelassen):
Die allg. Grundform lautet ja [mm] x^{k+1}=x^{k}-F'(x^{k})^{-1}*F(x^{k}) [/mm] mit k=0(1)... und [mm] x^{0}=Startvektor, [/mm] wobei k den k-ten Iterationsschritt verkörpert.
Nun setze man [mm] p^{k}=F'(x^{k})^{-1}*F(x^{k}) [/mm] [1]. Zum Lösen dieses Produktes löse man das Gleichungssystem [mm] F'(x^{k})*p^{k}=F(x^{k}) [/mm] nach entsprechenden Umformen von [1].
Man erhält nun [mm] p^{k} [/mm] und setze in die allgemeine Form ein.
Somit brauchst du generell keine inverse Matrix berechnen, was ja beispielsweise bei Dimension >4 ja auch wieder zusätzlich extrem viel Zeit beansprucht. Zudem kannst du nicht immer davon ausgehen, dass alle Matrizen F regulär sind. Du umgehst demzufolge einer Menge von Problemen.
Ich weiß nicht, ob dir das ausreichend erscheint, da es ja im Grunde genommen keine vollkommene mathematische Begründung ist?!
Trotzdem noch viel Erfolg beim Lernen!!
Saludos
Ramanujan
|
|
|
|