Isolierte Singularitäten < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:38 Mo 27.09.2010 | Autor: | LadyA |
Halllo liebe Leute,
(sin z)/z hat in z=0 eine hebbare Singularität, da wegen der Existenz von [mm] \limes_{z\rightarrow\00} [/mm] (sin z)/ z =(sin z)' =cos (0) =1 ,
da die Funktion sinz/z in einer Umgebung von z=0 beschränkt ist.
Ich verstehe nicht wieso sie die Ableitung bildet :-( Nach den Methoden im Skript könnte man einfach das Limes wie oben auch gegen 0 laufen lassen und wenn der Limes = [mm] \infty [/mm] wäre hätte man einen Pol oder wenn er beschränkt wäre eine hebbare Singularität! Könnt ihr mir bitte erklären wieso sie diese aufgabe so löst??
LG
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:52 Mo 27.09.2010 | Autor: | rainerS |
Hallo!
> Halllo liebe Leute,
>
> (sin z)/z hat in z=0 eine hebbare Singularität, da wegen
> der Existenz von [mm]\limes_{z\rightarrow\00}[/mm] (sin z)/ z =(sin
> z)' =cos (0) =1 ,
>
> da die Funktion sinz/z in einer Umgebung von z=0
> beschränkt ist.
>
> Ich verstehe nicht wieso sie die Ableitung bildet :-( Nach
> den Methoden im Skript könnte man einfach das Limes wie
> oben auch gegen 0 laufen lassen und wenn der Limes = [mm]\infty[/mm]
> wäre hätte man einen Pol oder wenn er beschränkt wäre
> eine hebbare Singularität! Könnt ihr mir bitte erklären
> wieso sie diese aufgabe so löst??
Der Trick besteht in diesem Fall darin, [mm] $\sin [/mm] z/z$ als Differenzenquotient der Sinusfunktion an der Stelle 0 aufzufassen:
[mm] \limes_{z\to 0} \bruch{\sin z }{z} = \limes_{z\to 0} \bruch{\sin z - \sin 0}{ z - 0 } [/mm] .
Da die Sinusfunktion komplex differenzierbar ist, ist der Grenzwert gerade die Ableitung an der Stelle 0, also [mm] $\sin' [/mm] 0 [mm] =\cos [/mm] 0 =1$.
Das geht aber nur in so einem speziellen Fall, weil (a) im Nenner z steht, und (b) weil [mm] $\sin [/mm] 0 = 0 $ ist.
Viele Grüße
Rainer
|
|
|
|