Ist G eine Funktion < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Ist G der Graoh einer Funktion von A nach B? Und wenn, ist die Funktion injektiv, surjektiv oder bijektiv?
1. [mm] A=\{1\}, B=\{1,2\}, G=A\times [/mm] B
2. [mm] A=\{0,8,15\}, B=\{\frac{1}{2},\frac{1}{3},\frac{1}{5}\}, G=\{(0,\frac{1}{2}),(8,\frac{1}{5}),(15,\frac{1}{5})\}
[/mm]
3. [mm] A=\mathbb{N}, B=\mathbb{N}, G=\{(n,2n)|n\in\mathbb{N}\}
[/mm]
4. [mm] A=\mathbb{N}, B=\mathbb{N}, G=\{(2n,n)|n\in\mathbb{N}\} [/mm] |
$(1.)$ [mm] $G=A\times B=\{(1,1),(1,2)\}$
[/mm]
Dies ist kein Graph einer Funktion [mm] $f:A\rightarrow [/mm] B$,
denn [mm] $1\in [/mm] A$ wurde zwei Elemente in $ B$ zugeordnet.
$(2.)$ Dies ist ein Graph einer Funktion [mm] $f:A\rightarrow [/mm] B$,
denn jedem Element in $A$ ist genau ein Element aus $B$ zugeordnet.
[mm] $f:A\rightarrow [/mm] B$ ist nicht injektiv, denn [mm] $\frac{1}{5}\in [/mm] B$ wurde zwei Elementen aus $A$ zugeordnet.
[mm] $f:A\rightarrow [/mm] B$ ist nicht surjektiv, denn [mm] $\frac{1}{3}\in [/mm] B$ wurde kein Element aus $A$ zugeordnet.
[mm] $f:A\rightarrow [/mm] B$ ist nicht surjektiv, daher per Definition auch nicht bijektiv.
$(3.)$ [mm] $A=\mathbb{N}, B=\mathbb{N}, G=\{(n,2n)|n\in \mathbb{N}\}$
[/mm]
[mm] $G=\{(1,2),(2,4),(3,6),...\}$
[/mm]
Dies ist ein Graph einer Funktion [mm] $f:A\rightarrow [/mm] B$,
denn jedem Element in $A$ ist genau ein Element aus $B$ zugeordnet und [mm] $G\subseteq A\times [/mm] B$.
[mm] $f:A\rightarrow [/mm] B$ ist injektiv, denn jedem [mm] $a\in [/mm] A$ ist ein eigenes [mm] $b\in [/mm] B$ zugeordnet.
[mm] $f:A\rightarrow [/mm] B$ ist nicht surjektiv, denn für mindestens ein [mm] $b\in [/mm] B$ gibt es kein [mm] $a\in [/mm] A$ mit $f(a)=b$.
[mm] $f:A\rightarrow [/mm] B$ ist nicht surjektiv, daher per Definition auch nicht bijektiv.
$(4.)$ [mm] $A=\mathbb{N}, B=\mathbb{N}, G=\{(2n,n)|n\in \mathbb{N}\}$
[/mm]
[mm] $G=\{(2,1),(4,2),(6,3),...\}$
[/mm]
Dies ist kein Graph einer Funktion [mm] $f:A\rightarrow [/mm] B$,
denn mindestens einem Element in $A$ ist nicht genau ein Element in $ B$ zugeordnet.
Ok?
|
|
|
|
> Ist G der Graoh einer Funktion von A nach B? Und wenn, ist
> die Funktion injektiv, surjektiv oder bijektiv?
>
> 1. [mm]A=\{1\}, B=\{1,2\}, G=A\times[/mm] B
> 2. [mm]A=\{0,8,15\}, B=\{\frac{1}{2},\frac{1}{3},\frac{1}{5}\}, G=\{(0,\frac{1}{2}),(8,\frac{1}{5}),(15,\frac{1}{5})\}[/mm]
>
> 3. [mm]A=\mathbb{N}, B=\mathbb{N}, G=\{(n,2n)|n\in\mathbb{N}\}[/mm]
>
> 4. [mm]A%3D%5Cmathbb%7BN%7D%2C%20B%3D%5Cmathbb%7BN%7D%2C%20G%3D%5C%7B(2n%2Cn)%7Cn%5Cin%5Cmathbb%7BN%7D%5C%7D[/mm]
Moin!
>
> [mm](1.)[/mm] [mm]G=A\times B=\{(1,1),(1,2)\}[/mm]
> Dies ist kein Graph
> einer Funktion [mm]f:A\rightarrow B[/mm],
> denn [mm]1\in A[/mm] wurde zwei Elemente in [mm]B[/mm] zugeordnet.
Stimmt.
>
> [mm](2.)[/mm] Dies ist ein Graph einer Funktion [mm]f:A\rightarrow B[/mm],
>
> denn jedem Element in [mm]A[/mm] ist genau ein Element aus [mm]B[/mm]
> zugeordnet.
> [mm]f:A\rightarrow B[/mm] ist nicht injektiv, denn [mm]\frac{1}{5}\in B[/mm]
> wurde zwei Elementen aus [mm]A[/mm] zugeordnet.
> [mm]f:A\rightarrow B[/mm] ist nicht surjektiv, denn
> [mm]\frac{1}{3}\in B[/mm] wurde keinem Element aus [mm]A[/mm] zugeordnet.
> [mm]f:A\rightarrow B[/mm] ist nicht surjektiv, daher per
> Definition auch nicht bijektiv.
Stimmt.
>
> [mm](3.)[/mm] [mm]A=\mathbb{N}, B=\mathbb{N}, G=\{(n,2n)|n\in \mathbb{N}\}[/mm]
>
> [mm]G=\{(1,2),(2,4),(3,6),...\}[/mm]
> Dies ist ein Graph einer Funktion [mm]f:A\rightarrow B[/mm],
>
> denn jedem Element in [mm]A[/mm] ist genau ein Element aus [mm]B[/mm]
> zugeordnet und [mm]G\subseteq A\times B[/mm].
> [mm]f:A\rightarrow B[/mm]
> ist injektiv, denn jedem [mm]a\in A[/mm] ist ein eigenes [mm]b\in B[/mm]
> zugeordnet.
Ich weiß, was Du meinst, könnte mir aber vorstellen, daß Du mit der Formulierung keinen Blumentopf gewinnst.
Rechne doch die Injektivität hier vor, zeige also, daß aus f(n)=f(m) folgt, daß n=m.
> [mm]f:A\rightarrow B[/mm] ist nicht surjektiv, denn für
> mindestens ein [mm]b\in B[/mm] gibt es kein [mm]a\in A[/mm] mit [mm]f(a)=b[/mm].
Gib ganz konkret solch ein Element an - überlasse dies nicht der Fantasie des Lesers!
> [mm]f:A\rightarrow B[/mm] ist nicht surjektiv, daher per
> Definition auch nicht bijektiv.
>
> [mm](4.)[/mm] [mm]A=\mathbb{N}, B=\mathbb{N}, G=\{(2n,n)|n\in \mathbb{N}\}[/mm]
>
> [mm]G=\{(2,1),(4,2),(6,3),...\}[/mm]
> Dies ist kein Graph einer Funktion [mm]f:A\rightarrow B[/mm],
> denn mindestens einem Element in [mm]A[/mm] ist nicht genau ein
> Element in [mm]B[/mm] zugeordnet.
Gib auch hier das partnerlose Element an.
LG Angela
>
> Ok?
|
|
|
|
|
Moin!
3. Sei $f(a)=f(b)$.
Daher $2a=f(a)=f(b)=2b$. Dies gilt nur, falls $a=b$. Daher ist f injektiv.
Für [mm] $3\in$ [/mm] B gibt es kein [mm] $a\in [/mm] A$ mit $f(a)=3$. Daher ist f nicht surjektiv.
4. [mm] $3\in [/mm] A$ wurde kein Element aus B zugeordnet.
So?
Vielen Dank fürs korregieren.
|
|
|
|
|
Ja,
so dachte ich mir das.
LG Angela
|
|
|
|