Jordan Normalform < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:11 Mi 22.06.2016 | Autor: | Schobbi |
Aufgabe | Sei [mm] A=\pmat{ -3 & 1 & 6 \\ 0 & 3 & 0 \\ -3 & 1 & 6 }\in M(3\times 3,\IC). [/mm] Bestimmen Sie die Jordansche Normalform von A auf folgende Weise:
a) Bestimmen Sie das charakteristische Polynom und zerlegen Sie es in Linearfaktoren.
b) Zeigen Sie, dass [mm] E_{\lambda_1} [/mm] und [mm] E_{\lambda_2} [/mm] beide eindimensional sind und bestimmen Sie jeweils einen Eigenvektor [mm] v_1 [/mm] bzw. [mm] v_2. [/mm] Finden Sie weiterhin einen Vektor [mm] v_3 \in Kern((A-\lambda_2)^2)\supset E_{\lambda_2}, [/mm] der nicht in [mm] E_{\lambda_2} [/mm] liegt.
c) Setzen Sie [mm] S:=(v_1,v_2,v_3)\in M(3\times [/mm] 3, C). Zeigen Sie, dass S invertierbar ist und berechnen Sie [mm] J=S^{-1}AS. [/mm] |
Moin zusammen, irgendwie hat sich wohl ein Rechenfehler in meine Lösung eingeschlichen aber ich kann ihn leider nicht finden und da ja bekanntlich mehr Augen auch mehr sehen als zwei, bitte ich um Eure Hilfe und um eine kleine Korrektur:
zu a) Ich habe das charakteristische Polynom [mm] P_A(t)=det(A-tE)=-t(t-3)^3 [/mm] berechnet. Daraus ergeben sich dann die Eigenwerte [mm] \lambda_1=0 [/mm] und [mm] \lambda_2=3
[/mm]
zu b) Da gelten muss: [mm] (A-\lambda_{1,2}E)v=0 [/mm]
ergibt sich als Eigenvektor zum Eigenwert 0: [mm] E_{\lambda_1}=E_0=Lin\{\vektor{1 \\ 0 \\2}\}
[/mm]
und als Eigenvektor zum Eigenwert 3: [mm] E_{\lambda_2}=E_3=Lin\{\vektor{1 \\ 0 \\1}\}
[/mm]
Ergänzt habe ich diese beiden Vektoren mit [mm] v_3=\vektor{0 \\ 1 \\0}, [/mm] und erhalte somit eine Basis des [mm] \IR^3
[/mm]
zu c) Es folgt dann [mm] S=\pmat{ 1 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 1 & 0} [/mm] und für die inverse Matrix [mm] S^{-1}=\pmat{ -1 & 0 & 1 \\ 2 & 0 & -1 \\ 0 & 1 & 0}
[/mm]
Doch jetzt zu meinem Problem: Für [mm] J=S^{-1}AS [/mm] erhalte ich [mm] J=\pmat{ 0 & 0 & 0 \\ 9 & 3 & 1 \\ 0 & 0 & 3}
[/mm]
Aber die 9 gehört doch gar nicht in meine Jordanmatrix, da hab ich doch nur die Eigenwerte auf der Diagonalen und die Einsen, die mit die einzelnen Blöcke bilden.
Wäre lieb wenn Ihr mir einen kleinen Tipp geben könntet, wo sich mein Fehler eingeschlichen hat. DANKE!
Beste Grüße
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:26 Mi 22.06.2016 | Autor: | fred97 |
> Sei [mm]A=\pmat{ -3 & 1 & 6 \\ 0 & 3 & 0 \\ -3 & 1 & 6 }\in M(3\times 3,\IC).[/mm]
> Bestimmen Sie die Jordansche Normalform von A auf folgende
> Weise:
>
> a) Bestimmen Sie das charakteristische Polynom und zerlegen
> Sie es in Linearfaktoren.
>
> b) Zeigen Sie, dass [mm]E_{\lambda_1}[/mm] und [mm]E_{\lambda_2}[/mm] beide
> eindimensional sind und bestimmen Sie jeweils einen
> Eigenvektor [mm]v_1[/mm] bzw. [mm]v_2.[/mm] Finden Sie weiterhin einen Vektor
> [mm]v_3 \in Kern((A-\lambda_2)^2)\supset E_{\lambda_2},[/mm] der
> nicht in [mm]E_{\lambda_2}[/mm] liegt.
>
> c) Setzen Sie [mm]S:=(v_1,v_2,v_3)\in M(3\times[/mm] 3, C). Zeigen
> Sie, dass S invertierbar ist und berechnen Sie [mm]J=S^{-1}AS.[/mm]
> Moin zusammen, irgendwie hat sich wohl ein Rechenfehler in
> meine Lösung eingeschlichen aber ich kann ihn leider nicht
> finden und da ja bekanntlich mehr Augen auch mehr sehen als
> zwei, bitte ich um Eure Hilfe und um eine kleine
> Korrektur:
>
> zu a) Ich habe das charakteristische Polynom
> [mm]P_A(t)=det(A-tE)=-t(t-3)^3[/mm] berechnet.
Hier hast Du Dich wahrscheinlich nur verschrieben. [mm] -t(t-3)^2 [/mm] ist das char. Polynom.
> Daraus ergeben sich
> dann die Eigenwerte [mm]\lambda_1=0[/mm] und [mm]\lambda_2=3[/mm]
>
> zu b) Da gelten muss: [mm](A-\lambda_{1,2}E)v=0[/mm]
> ergibt sich als Eigenvektor zum Eigenwert 0:
> [mm]E_{\lambda_1}=E_0=Lin\{\vektor{1 \\ 0 \\2}\}[/mm]
Das stimmt nicht, sondern [mm]E_{\lambda_1}=E_0=Lin\{\vektor{2 \\ 0 \\1}\}[/mm]
FRED
> und als
> Eigenvektor zum Eigenwert 3:
> [mm]E_{\lambda_2}=E_3=Lin\{\vektor{1 \\ 0 \\1}\}[/mm]
>
> Ergänzt habe ich diese beiden Vektoren mit [mm]v_3=\vektor{0 \\ 1 \\0},[/mm]
> und erhalte somit eine Basis des [mm]\IR^3[/mm]
>
> zu c) Es folgt dann [mm]S=\pmat{ 1 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 1 & 0}[/mm]
> und für die inverse Matrix [mm]S^{-1}=\pmat{ -1 & 0 & 1 \\ 2 & 0 & -1 \\ 0 & 1 & 0}[/mm]
>
> Doch jetzt zu meinem Problem: Für [mm]J=S^{-1}AS[/mm] erhalte ich
> [mm]J=\pmat{ 0 & 0 & 0 \\ 9 & 3 & 1 \\ 0 & 0 & 3}[/mm]
>
> Aber die 9 gehört doch gar nicht in meine Jordanmatrix, da
> hab ich doch nur die Eigenwerte auf der Diagonalen und die
> Einsen, die mit die einzelnen Blöcke bilden.
>
> Wäre lieb wenn Ihr mir einen kleinen Tipp geben könntet,
> wo sich mein Fehler eingeschlichen hat. DANKE!
>
> Beste Grüße
>
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:56 Mi 22.06.2016 | Autor: | Schobbi |
DANKE, manchmal sieht man den Wald vor lauter Bäumen nicht
Jetzt passts auch mit
[mm] J=S^{-1}AS=\pmat{ 1 & 0 & -1 \\ -1 & 0 & 2 \\ 0 & 1 & 0 }*\pmat{ -3 & 1 & 6 \\ 0 & 3 & 0 \\ -3 & 1 & 6 }*\pmat{ 2 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 }=\pmat{ 0 & 0 & 0 \\ 0 & 3 & 1 \\ 0& 0 & 3 }
[/mm]
|
|
|
|