www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Jordan Normalform
Jordan Normalform < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordan Normalform: so allgemein
Status: (Frage) beantwortet Status 
Datum: 22:14 Sa 08.07.2006
Autor: Poffelchen

Ja, das is bei uns bissl kurz gekommen, ich erzähl mal ansatzweise wie ichs verstanden hab und wer ahnung hat kann sagen was richtig und was unfug ist ^^

Gegen sei ne Matrix, z.b. 3x3
Dann kann das polynom verschiedene formen haben, z.b. 3 verschiedene eigenwerte, dann wäre die Jordanform gleich der Diagonalform oder?
Naja geh ich mal von ner doppelten Nullstelle aus, dann ist der Eigenwert mit einfacher algebraischer Vielfachheit eigentlich vernachlässigbar und ich schau mir den Eigenwert mit 2 facher algebr. Vielfachheit an.
Sollte die geometrische Vielfachheit gleich der algebraischen sein, lässt sich Die 3x3 Matrix diagonalisieren, richtig?
Wenn die geometrische Vielfachheit vom kern [mm] (A-\lambda) [/mm] 1 ist also kleiner der algebraischen muss ich das jetzt irgendwie i neien Jordan Form bringen...

aber woher kommt die 1 oberhalb der Diagonalen her?
[mm] \pmat{ \lambda_1& 1 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 } [/mm]


versteh das irgendwie net, man findet jetzt ne TrafoMatrix dazu, indem man die EIgenvektoren nimmt daher [mm] Ker(A-\lambda_1) [/mm] und [mm] Ker(A-\lambda_2), [/mm] hat man 2 Eigenvektoren, fehlt ein weiterer Vektor aus der Trafo...
Wie mach ich weiter, angeblich soll man ihn über [mm] Ker(A-\lambda_1)^2 [/mm] bestimmen, aber da kommen doch 2 Vektoren raus, welchem nehm ich da, oder ist einer eh schon der gleiche aus [mm] Ker(A-\lambda_1)... [/mm]
Aber wie um himmelswillen erklärt man die eins über der Hauptdiagonalen ^^
Alles irgendwie verwirrend, mit dem geposteten Kochrezept kam ich noch weniger klar, also nicht darauf verweisen ^^

        
Bezug
Jordan Normalform: kochen mit Jordan
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:30 Sa 08.07.2006
Autor: Bastiane

Hallo!

Vielleicht hilft dir mein schon öfter zitierter []Link. :-)

Viele Grüße
Bastiane
[cap]


Bezug
                
Bezug
Jordan Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:16 Sa 08.07.2006
Autor: Poffelchen

hab doch extra geschrieben dass mir das kochrezept nicht geholfen hat, hab die 6 seiten ausgfedruckt hier liegen und studiert ^^ aber so wirklich schlüssig wurde mir das alles nicht, zu kompliziert

Bezug
                        
Bezug
Jordan Normalform: sorry
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:42 So 09.07.2006
Autor: Bastiane

Hallo!

Sorry, da hätte ich wohl doch genauer lesen müssen... [sorry]

Viele Grüße
Bastiane
[cap]


Bezug
                        
Bezug
Jordan Normalform: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:58 So 09.07.2006
Autor: deralex

Hi,

die erste Frage würde ich auch mal gerne wissen ;). Wenn ich eine 3x3 Matrix habe mit 3 Eigenwerten, dürften die Haupträume zu den EW ja nur DIM 1 haben und somit müsste ja nur die Diagonale der Matrix besetzt sein!
Oder?

Matrix nxn mit n verschiedenen Eigenwerten => es existiert eine äquivalente Diagonalmatrix?

Bezug
                                
Bezug
Jordan Normalform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Di 11.07.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Jordan Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 10:19 Mo 10.07.2006
Autor: steffenhst

Hallo,

zu deiner ersten Frage: Ja es ist richtig, wenn die MAtrix diagonalisierbar ist, dann ist die Jordansche Normalform identisch mit der Diagonalmatrix.

zu deiner zweiten Frage: Hast du schon mal etwas von sog. nilpotenten Endomorphismen gehört. Eine Matrix A lässt sich zerlegen in einen nilpotenten Anteil und einen diagonallisierbaren Anteil (sog. Jordanzerlegung) und die JNF ist die Summe beider. Die Normalform zu diagonalisierbaren Matirzen ist die Diagonalmatrix. Die Normalform von nilpotenten Matrizen ist eine Matrix mit 1 oder nullen in der Diagonalen über der Hauptdiagonalen (also deine ominöse eins).  Schaue also in deinem Mathebuch mal nach nilpotenten Endomorphismen und deren Normalform. Ist eine Mtarix nilpotent, dann ist die JNF gleich der nilpitenten Normalform zu der Matrix.

Grüße Steffen

Bezug
                
Bezug
Jordan Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:57 Mo 10.07.2006
Autor: Poffelchen

hatten wir noch net, ich werd mir das mal anschauen und hoffentlich verstehen ^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]