www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Jordan Normalformen
Jordan Normalformen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordan Normalformen: Verständnis(aufgabe)
Status: (Frage) beantwortet Status 
Datum: 20:51 Sa 09.07.2011
Autor: Torste

Aufgabe
Es sei V ein [mm] \IZ_5-VR. [/mm] Bestimmen Sie die möglichen Jordan-Normalformen von der linearen Abbildung [mm] \gamma:V [/mm] -> V mit folgenden Eigenschaften:
a.) [mm] x_\gamma [/mm] =(t-2)^10, [mm] m_\gamma=(t-2)^2 [/mm]
b.) [mm] x_\gamma=(t+1)^4(t-1)^2, m_\gamma=(t-1)(t+1) [/mm]

Hallo!

Ich weiß nicht Recht, wie ich obige Schreibweise mit dem [mm] \gamma [/mm] und dem [mm] m_\gamma [/mm] insbesondere zu interpretieren ist.
Soll ich bei a einfach eine 10x10 Matrix angeben mit alles zweien auf der Diagonalen und Einsen eine Diagonale darunter!?
Aber was soll das dann mit dem [mm] m_\gamma!? [/mm]
Könnte mir das bitte jmd. erklären!
Das wäre toll!
LG Torste und schonmal danke

        
Bezug
Jordan Normalformen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 Sa 09.07.2011
Autor: felixf

Moin!

> Es sei V ein [mm]\IZ_5-VR.[/mm] Bestimmen Sie die möglichen
> Jordan-Normalformen von der linearen Abbildung [mm]\gamma:V[/mm] ->
> V mit folgenden Eigenschaften:
>  a.) [mm]x_\gamma[/mm] =(t-2)^10, [mm]m_\gamma=(t-2)^2[/mm]
>  b.) [mm]x_\gamma=(t+1)^4(t-1)^2, m_\gamma=(t-1)(t+1)[/mm]
>  Hallo!
>  
> Ich weiß nicht Recht, wie ich obige Schreibweise mit dem
> [mm]\gamma[/mm] und dem [mm]m_\gamma[/mm] insbesondere zu interpretieren
> ist.
>  Soll ich bei a einfach eine 10x10 Matrix angeben mit alles
> zweien auf der Diagonalen und Einsen eine Diagonale
> darunter!?
>  Aber was soll das dann mit dem [mm]m_\gamma!?[/mm]
>  Könnte mir das bitte jmd. erklären!
>  Das wäre toll!

Das [mm] $m_\gamma$ [/mm] ist das Minimalpolynom.

Weisst du, wie die Beziehung zwischen JNF und Minimalpolynom ist?

LG Felix


Bezug
                
Bezug
Jordan Normalformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Sa 09.07.2011
Autor: Torste

Ne, das sagt mir noch nichts...vielleicht wie oft ich das maximal teilen kann oder so!?
Ich hoffe gleich weiß ich was ich damit anfangen soll^^
lg Torste

Bezug
                        
Bezug
Jordan Normalformen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 So 10.07.2011
Autor: angela.h.b.


> Ne, das sagt mir noch nichts...vielleicht wie oft ich das
> maximal teilen kann oder so!?
>  Ich hoffe gleich weiß ich was ich damit anfangen soll^^

Hallo,

ehrlich gesagt: wie wär's mal mit ein bißchen eigener Recherche?
In den 22 Minuten zwischen Felix' Antwort und Deiner erneuten Nachfrage scheint ja nicht viel passiert zu sein. Echt mager.

algebraische Vielfachheit des Eigenwertes [mm] \lambda: [/mm] Größe des zugehörigen Jordanblocks

geometrische Vielfachheit des Eigenwertes [mm] \lambda: [/mm] Anzahl der Jordankästchen im Jordanblock zum Eigenwert [mm] \lambda [/mm]

Exponent von [mm] (x-\lambda) [/mm] im Minimalpolynom: Größe des größten vorkommenden Kästchens im Jordanblock zu [mm] \lambda. [/mm]

Gruß v. Angela







Bezug
                                
Bezug
Jordan Normalformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:16 Mo 11.07.2011
Autor: Torste

Danke für die ganzen Tipps - das hat mich schon viel weiter gebracht!
Nur wie erhalte ich nun die geometrische Vielfachheit?
Das ist mir noch nicht klar - ich kann das ja nicht über den Kern machen!?
(Also habe ich jetzt irgendwie in beiden offenen Fragen so ziemlich das gleiche Problem!!?? - sollte also eine Hilfestellung reichen denke und hoffe ich!!)+Gruß Torste

Bezug
                                        
Bezug
Jordan Normalformen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:24 Di 12.07.2011
Autor: angela.h.b.



> weiter gebracht!
>  Nur wie erhalte ich nun die geometrische Vielfachheit?
>  Das ist mir noch nicht klar - ich kann das ja nicht über
> den Kern machen!?

Hallo,

die geometrische Vielfachheit vom Eigenwert [mm] \lambda [/mm] ist die Dimension des Kerns von [mm] A-\lambda [/mm] E, aber Du hast die Matrix A hier ja gar nicht.
Sie kann auf jeden fall nicht größer als die algebraische sein.

Du weißt, wie JNFen aussehen? (Wenn nicht: nachgucken.)

Du kannst den Angaben, die Du hast, die Hauptdiagonale der JNF entnehmen,
und wenn Du weißt, wie groß das größte Kästchen jeweils zu [mm] \lambda_i [/mm] ist, dann hast Du nicht mehr so viele Möglichkeiten zur Auswahl.

Gruß v. Angela
Und all diese Möglichkeiten, die es gibt, sollst Du hinschreiben.


Bezug
                                                
Bezug
Jordan Normalformen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Di 12.07.2011
Autor: Torste

Achso - das hatte mich irritiert!
das gibt es gar keine eindeutige Darstellung bis dato...danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]