Kern einer 3*5 Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:39 Di 22.11.2011 | Autor: | Jarkiro |
Aufgabe | Finden sie für die Matrix A = [mm] \pmat{ 1 & 5 & 0 & 0 & 15 \\ 0 & 0 & 1 & 0 & 17 \\ 0 & 0 & 0 & 1 & 7} [/mm] den Kern |
Nabend,
ich scheitere gerade daran einen Kern zu finden, wenn die Matrix als Gleichungssystem keine eindeutige Lösung hat. Als Gleichungssystem von A *x = 0 kriege ich ja
a + 5b + 15e = 0
c +17e = 0
d + 7e = 0
Im Endeffekt werde ich dann ja keine eindeutige Lösung haben. Bin zwar schon soweit das ich sehe
c = -17e
d = -7e => d = [mm] \bruch{-7}{17}
[/mm]
Allerdings weiß ich nicht wie ich davon jetzt auf eine Lösung, bzw. Lösungsmenge komme.
Grüße
Jar
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:53 Di 22.11.2011 | Autor: | Stoecki |
die deimension des kerns muss 2 sein, da die 2, 3 und 4 spalte linear unabhängig sind und das bild somit dimension 3 hat. du kannst d durch -7e ersetzen, wann immer es im gleichungssystem auftritt. ebenso kannst du c mit -17e ersetzen. du erhälst:
a + 5b + 15e = 0
c = -17e
d = - 7e
jeder vektor, der diese bedingungen erfüllt liegt also im kern. also definieren wir doch einfach mal 2 linear unabhängige:
setze e=0 => c=d=0 und a=-5b. setze a=5 => b=-1
erster vektor: v:=(5, 1, 0, 0, 0)
den zweiten baust du dir zum beispiel irgendwie mit e=1 und nennen diesen vektor w.
damit sind die sicherlich linear unabhängig (in dem einen ist e=1 und in dem anderen e=0, also kann der eine den anderen nicht darstellen) und du hat eine basis für den kern.
also ist der kern = {x [mm] \in \IR^{5} [/mm] | x = [mm] \lambda_{1}*v [/mm] + [mm] \lambda_{2}*w, [/mm] sodass [mm] \lambda_{i} \in \IR [/mm] }
|
|
|
|