www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Kern und Injektiv
Kern und Injektiv < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern und Injektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:30 Di 27.03.2007
Autor: Hoschi78

Nachdem ich gesehen habe mit welchem Erfolg diese Seite betrieben wird, dachte ich, ich nutze dieses Angebot auch....Vielen Dank übrigens schon im Voraus, einige meiner Fragen habe ich bereits durch andere Nutzer in Archiveinträgen klären können.
Also hier jetzt meine Frage:
Fast beiläufig erwähnt Bosch auf Seite 14, dass [mm] \ker \varphi = \{1\} [/mm] äquivalent ist mit der Injektivität von [mm] \varphi [/mm].
Das heisst also nicht anderes als: [mm] \varphi [/mm] injektiv [mm] \gdw \ker \varphi [/mm] = [mm] \{1\} [/mm]
Nun zur Frage:
1. Mit der "1" ist in diesem Fall ist in diesem Fall doch wohl das neutrale Element bzgl der Multiplikation gemeint?
2. Die Richtung "[mm] \Rightarrow [/mm]" erschient plausibel: Wenn [mm] \varphi [/mm] injektiv ist, dann folgt direkt [mm] \ker \varphi [/mm] = [mm] \{1\}. [/mm] Es kann aufgrund der Injektivität nur ein Element geben, welches auf das neutrale Element abgebildet wird.
Aber wieso gilt die Rückrichtung? Anders formuliert: Wieso folgt aus [mm] \ker \varphi [/mm] = [mm] \{1\} [/mm] das [mm] \varphi [/mm] injektiv ist?
Ich entschuldige mich an dieser Stelle dafür, falls ich mich unklar ausdrücke... Darin war ich leider nie der Beste...
Vielen dank im Voraus
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Kern und Injektiv: Homomorphismus
Status: (Antwort) fertig Status 
Datum: 21:43 Di 27.03.2007
Autor: comix

zu 1.: ja

zu 2.: für die Richtung ker [mm] \phi [/mm] = {1} [mm] \Rightarrow \phi [/mm] injektiv braucht man, dass [mm] \phi [/mm] ein Gruppenhomomorphismus ist:

z.z.: f(x)=f(y) [mm] \Rightarrow [/mm] x=y.

Sei f(x)=f(y) [mm] \Rightarrow f(x)*f(y)^{-1}=1 \Rightarrow f(x*y^{-1}) [/mm] = 1 [mm] \Rightarrow x*y^{-1} \in [/mm] ker [mm] \phi \Rightarrow x*y^{-1}=1 \Rightarrow [/mm] x=y.

Bezug
                
Bezug
Kern und Injektiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:59 Di 27.03.2007
Autor: Hoschi78

Da habe ich wohl etwas auf dem Schlauch gestanden, vielen, vielen Dank!!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]