Kettenregel < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:55 Mi 03.09.2008 | Autor: | cares87 |
Aufgabe | f:U [mm] \to \IR, [/mm] g:V [mm] \to \IR [/mm] mit f(U) [mm] \subset [/mm] V.
Sei f in x [mm] \in [/mm] U diffbar, g in g=f(x) [mm] \subset [/mm] V diffbar.
Dann ist (g [mm] \circ [/mm] f):V [mm] \to \IR [/mm] diffbar in x [mm] \in [/mm] U und es gilt: (g [mm] \circ [/mm] f)'(x) = g'(f(x)) [mm] \* [/mm] f'(x) |
Hallo,
ich bin bei dem Beweis zur Kettenregel etwas in Verwirrung geraten, ich hoffe, ihr könnt mir helfen:
Als erstes haben wir g*:V [mm] \to \IR [/mm] definiert mit [mm] g*(z)=\begin{cases}\bruch{g(z)-g(y)}{z-y},&\mbox{für} z \not= y\\g(y),&\mbox{für} {z=y}\end{cases} [/mm]
Jetzt folgt als nächstes: g diffbar in y=f(x) [mm] \Rightarrow \lim_{z \not= y} [/mm] g*(z) = g*(y) = g(y). Lasse ich hier beim Limes y gegen z laufen und habe dann den Differentialquotienten?
okay, den Rest des Beweises hab ich mir selbst überlegen können, wollte nur bei dem Teil schnell nachfragen.
Danke und schöne Grüße,
Caro
|
|
|
|
> f:U [mm]\to \IR,[/mm] g:V [mm]\to \IR[/mm] mit f(U) [mm]\subset[/mm] V.
> Sei f in x [mm]\in[/mm] U diffbar, g in g=f(x) [mm]\subset[/mm] V diffbar.
> Dann ist (g [mm]\circ[/mm] f):V [mm]\to \IR[/mm] diffbar in x [mm]\in[/mm] U und es
> gilt: (g [mm]\circ[/mm] f)'(x) = g'(f(x)) [mm]\*[/mm] f'(x)
> Hallo,
>
> ich bin bei dem Beweis zur Kettenregel etwas in Verwirrung
> geraten, ich hoffe, ihr könnt mir helfen:
> Als erstes haben wir g*:V [mm]\to \IR[/mm] definiert mit
> [mm]g*(z)=\begin{cases}\bruch{g(z)-g(y)}{z-y},&\mbox{für} z \not= y\\g\red{'}(y),&\mbox{für} {z=y}\end{cases}[/mm]
> Jetzt folgt als nächstes: g diffbar in y=f(x) [mm]\Rightarrow \lim_{z \not= y}[/mm]
> g*(z) = g*(y) = [mm] g\red{'}(y). [/mm] Lasse ich hier beim Limes y gegen z
> laufen und habe dann den Differentialquotienten?
> okay, den Rest des Beweises hab ich mir selbst überlegen
> können, wollte nur bei dem Teil schnell nachfragen.
Hallo,
ich glaube, Du hast hier etwas fallsch aufgeschrieben, ich habe markiert, wie's m.E. richtig wäre.
Du läßt das z gegen y laufen:
Weil g n.V. diffbar ist in y gilt
[mm] g'(y)=\limes_{z \to y}g^{\*}(z)
[/mm]
und nach Def. der Funktion [mm] g^{\*} [/mm] ist ja auch [mm] g^{\*}(y)=g'(y), [/mm] also [mm] g'(y)=\limes_{z \to y}g^{\*}(z)=g^{\*}(y).
[/mm]
Gruß v. Angela
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:18 Mi 03.09.2008 | Autor: | cares87 |
ok, danke :)
|
|
|
|