www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Klammern kürzen
Klammern kürzen < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Klammern kürzen: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:00 Mi 02.01.2008
Autor: ShubNiggurath

Aufgabe
[mm] \bruch{2(a+b)³}{(2a+2b)³}+\bruch{2(a-b)²}{4a+4b} [/mm]    

Ich bin wie folgt vorgegangen:

1. Nennersuche (hier (2a+2b)²
2. den 2. Bruch mit (a+b) multiplizieren (dann müsste 2a+2b)² rauskommen wenn mich nicht alles täuscht, also in der gekürzten Fassung
3. jetzt habe ich ja stehen: [mm] \bruch{2(a+b)³-2(a-b)²(a+b)}{(2a+2b)²} [/mm]

Frage: wie genau kürze ich jetzt weiter, brauche da nur einen Tipp, weil die Aufgabe scheint mir so schwer auch nicht zu sein nur irgendwie muss ich da was falsch machen. Muss ich vorher erst den Zähler ausmultiplizieren (das kann aber nicht sein - der Mathematiker ist ja bekanntlich faul und von daher muss es da einen Kniff geben)

Wäre somit wiedermal für einen kurzen Hinweis dankbar, Lösung soll sein: [mm] \bruch{a²+b²}{a+b} [/mm]  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Klammern kürzen: Hinweis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:35 Mi 02.01.2008
Autor: froopkind

Da die Aufgabe jetzt schon von jemand anderem bearbeitet wird, von mir nur ein Hinweis:
In deinem Zwischenergebnis aus 3. steckt scheinbar schon ein Fehler, denn das ist nicht mehr gleich der Lösung.

Bezug
        
Bezug
Klammern kürzen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:36 Mi 02.01.2008
Autor: angela.h.b.


> [mm]\bruch{2(a+b)³}{(2a+2b)³}+\bruch{2(a-b)²}{4a+4b}[/mm]  
> Ich bin wie folgt vorgegangen:
>  
> 1. Nennersuche (hier (2a+2b)²

Hallo,

ich weiß nun nicht so recht, was Du mit "Nennersuche" meinst...

Ich sehe in Deiner Rechnung 2 Nenner:

[mm] (2a+2b)³=(2*(a+b))^3=8*(a+b)^3 [/mm]    

und  

4a+4b=4(a+b)

Was man nun suchen sollte, wäre der Hauptnenner, und dieser Hauptnenner ist [mm] 8*(a+b)^3 [/mm] .

Das bedeutet, daß man mit dem ersten Bruch gar nichts weiter machen muß, den zweiten kann man auf den Hauptnenner bringen durch Erweitern mit  [mm] 2*(a+b)^2, [/mm]

und wenn Du dann sinnvoll weiterrechnest, solltest Du zu einem Ergebnis kommen.

Gruß v. Angela

EDIT: ich habe nun auchmal über den Bruchstrich geschaut.

Wenn Du Deine Nenner so schreibst, wie ich es oben getan habe, hast Du

[mm] \bruch{2(a+b)³}{8*(a+b)^3}+\bruch{2(a-b)²}{4(a+b)}. [/mm]

Du kannst nun kürzen, dadurch vereinfacht sich Deine Aufgabe zu [mm] \bruch{1}{4}+\bruch{(a-b)²}{2(a+b)}, [/mm]

nun Hauptnenner usw.


Bezug
                
Bezug
Klammern kürzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:47 Mi 02.01.2008
Autor: ShubNiggurath

besten Dank - mir wurde wiedermal geholfen :)

Bezug
                        
Bezug
Klammern kürzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:49 Mi 02.01.2008
Autor: angela.h.b.

Guck Dir meine bearbeitete Antwort an, Du kannst Arbeit sparen!

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]