www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Klausur LA1 2.3
Klausur LA1 2.3 < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Klausur LA1 2.3: Korrektur
Status: (Frage) beantwortet Status 
Datum: 08:36 Sa 24.03.2007
Autor: Zerwas

Aufgabe
Bestimmen sie den Rang und die Determinante der folgenden Matrix A aus [mm] M_4(\IQ) [/mm]
[mm] A=\pmat{ 1 & 2 & 4 & 1 \\ 3 & 0 & 1 & 0 \\ 4 & 1 & 2 & 1 \\ 1 & 2 & 0 & 1 } [/mm]

Rangbestimmung:
[mm] \pmat{ 1 & 2 & 4 & 1 \\ 3 & 0 & 1 & 0 \\ 4 & 1 & 2 & 1 \\ 1 & 2 & 0 & 1 }\to \pmat{ 1 & 2 & 0 & 1 \\ 0 & 6 & -1 & 3 \\ 0 & 0 & 5 & 3 \\ 0 & 0 & 0 & 3 } [/mm] => rg(A)=4

Determinante:
Man kann [mm] A=\pmat{ 1 & 2 & 4 & 1 \\ 3 & 0 & 1 & 0 \\ 4 & 1 & 2 & 1 \\ 1 & 2 & 0 & 1 } [/mm] durch Umformungen und Streichung aller Ausdrücke die 0 ergeben auf A'= [mm] \pmat{ -11 & 2 & 1 \\ -2 & 1 & 1 \\ 1 & 2 & 1 } [/mm] bringen nun gilt [mm] \vmat{ A } [/mm] = [mm] -\vmat{ A' }. [/mm]
[mm] \vmat{ A' }= [/mm] (-11)+(2) +(-4)-(1)-(-4)-(-22) = 12 => det(A)=-12

Ich wäre Dankbar wenn jmd diese Aufgaben Korrektur lesen könnte und mich auf Fehler Aufmerksam machen und bei den Aufgaben bei denen mir der Ansatz oder die Begründung fehlt auf die Sprünge hefen könnte.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Klausur LA1 2.3: Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 Sa 24.03.2007
Autor: angela.h.b.


> Bestimmen sie den Rang und die Determinante der folgenden
> Matrix A aus [mm]M_4(\IQ)[/mm]
>  [mm]A=\pmat{ 1 & 2 & 4 & 1 \\ 3 & 0 & 1 & 0 \\ 4 & 1 & 2 & 1 \\ 1 & 2 & 0 & 1 }[/mm]
>  
> Rangbestimmung:
>  [mm]\pmat{ 1 & 2 & 4 & 1 \\ 3 & 0 & 1 & 0 \\ 4 & 1 & 2 & 1 \\ 1 & 2 & 0 & 1 }\to \pmat{ 1 & 2 & 0 & 1 \\ 0 & 6 & -1 & 3 \\ 0 & 0 & 5 & 3 \\ 0 & 0 & 0 & 3 }[/mm]
> => rg(A)=4

Hallo,

wenn die umgeformte Matrix so aussieht, ist ihr Rang =4. Ich hab's nicht nachgerechnet.

> => det(A)=-12

Ich habe auf anderem Wege auch -12 für die Determinante berechnet.
(Da die [mm] det\not=0, [/mm] wissen wir auch, daß der Rang stimmt.)

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]