Kniff bei Partialbruchzerleg. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:10 So 03.07.2005 | Autor: | Marcin |
Hi, ich hab eine frage, die mir im zusammenhang mit der partialbruchzerlegung während eiens repetitoriums gekommen ist. es geht um folgendes: man löse das Integral
[mm] \integral [/mm] 2 [mm] \bruch{x^4-x^3+x^2-x+1}{x^2 (x-1) (x^2+1)} [/mm] dx
ok, PBZ liefert
= [mm] \frac{A}{x^2} [/mm] + [mm] \frac{B}{x} [/mm] + [mm] \frac{C}{x-1} [/mm] + [mm] \frac{Dx + E}{x^2+1}
[/mm]
man bringt das auf den hauptnenner und erhält:
(*) [mm] 2(x^4-x^3+x^2-x+1)=A(x-1)(x^2+1)+Bx(x-1)(x^2+1)+Cx^2(x^2+1)+(Dx+E)x^2(x-1) [/mm]
soweit alles klar. auch der nächste schritt, das einsetzen sinnvoller funktionswerte, um an die koeffizienten A..E zu kommen. da gibts dann erstmal logischerweise die nullstellen der nennerfaktoren:
x=1: 2*1=C*1*2 => C=1
x=0: 2*1=A(-1)*1 => A=-2
und jetzt kommt der special move.. der Koeffizientenvergleich. aber da nimmt mein repetitoriumsleiter einfach den stift in die hand, schaut kurz nach oben in term (*), und schreibt aus dem stehgreif folgende zeilen hin:
[mm] x^4: [/mm] 2=B+C+D, mit C=1 folgt: B+D=1
[mm] x^3: [/mm] -2=A-B-D+E <=> E=1
[mm] x^2: [/mm] 2=-A+B+C-E <=> B=0
meine kommilitonen meinten, das wäre 'direkt ausmultipliziert' und tierisch einfach zu verstehen.. ich hab da anscheinend n brett vorm kopf. könnt ihr mir kurz sagen, wie er auf diese terme kommt? das anschliessende ausführen der eigentlichen integration ist ja auch kein problem, nur diesen zwischenschritt kapier ich nicht.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:52 So 03.07.2005 | Autor: | taura |
Hallo Marcin!
[mm]2(x^4-x^3+x^2-x+1)= A(x-1)(x^2+1)+Bx(x-1)(x^2+1)+Cx^2(x^2+1)+(Dx+E)x^2(x-1)[/mm]
[mm]\gdw 2x^4-2x^3+2x^2-2x+2= Ax^3-Ax^2+Ax-A+Bx^4-Bx^3+Bx^2-Bx+Cx^4+Cx^2+Dx^4-Dx^3+Ex^3-Ex^2[/mm]
(Hier hab ich nur ausmultipliziert.)
[mm]\gdw 2x^4-2x^3+2x^2-2x+2= (B+C+D)x^4+(A-B-D+E)x^3+(-A+B+C-E)x^2+(A-B)x-A[/mm]
Hier habe ich jeweils [mm]x^4, x^3, x^2 \ und \ x[/mm] ausgeklammert.
Jetzt weißt du, dass die Skalare des ersten Terms jeweils gleich den Skalaren des zweiten Terms sein müssen, und daraus erhälst du die Gelichungen.
Hoffe, das hilft dir, wenn nicht frag nochmal nach, ok?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:01 So 03.07.2005 | Autor: | Marcin |
danke, das versteh ich nun. aber mir ist nach wie vor schleierhaft, wie man das sofort an der gleichung sehen kann.. scheint wohl ne reine übungssache zu sein (mein rep-leiter macht den job ja schon seit jahrzehnten, da isses klar dass er n paar sachen sofort sieht, die mir nicht auffallen). ich werde jedenfalls den weg des ausmultiplizierens gehen, solang ich diese methode nicht beherrsche.
dank dir jedenfalls für deine hilfe!
|
|
|
|