www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Körper "beweisen"
Körper "beweisen" < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper "beweisen": Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:37 Di 25.10.2011
Autor: EvelynSnowley2311

Aufgabe 1
Sei [mm] (\IR,+,*) [/mm] der Körper der reellen Zahlen. Zeigen Sie, dass [mm] (\IR^2,\oplus,\odot) [/mm] mit

[mm] \vektor{ x_{1}\\ x_{2}} \oplus \vektor{ y_{1}\\ y_{2}} [/mm] := [mm] \vektor{ x_{1}+y_{1}\\x_{2}+y_{2} } [/mm]

für alle [mm] \vektor{x1 \\ x2}, \vektor{y1 \\ y2} \in \IR^2 [/mm] ebenfalls ein Körper ist.

Aufgabe 2
Sei [mm] (\IR,+,*) [/mm] der Körper der reellen Zahlen. Zeigen Sie, dass [mm] (\IR^2,\oplus,\odot) [/mm] mit

[mm] \vektor{ x_{1}\\ x_{2}} \odot \vektor{ y_{1}\\ y_{2}} [/mm] :=  [mm] \vektor{ x_{1}y_{1}-x_{2}y_{2}\\x_{1}y_{2}+x_{2}y_{1} } [/mm]

für alle [mm] \vektor{x1 \\ x2}, \vektor{y1 \\ y2} \in \IR^2 [/mm] ebenfalls ein Körper ist.

huhu Leute.
wir haben diese übungsaufgabe aufgekriegt nur unser Übungsleiter kann das überhaupt nicht erklären und daher weiß wirklich keiner aus unsrer gruppe wie man was beweisen muss, in keinster form...
es wäre furchbar lieb, wenn mir jemand weiterhelfen könnte.

        
Bezug
Körper "beweisen": Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Di 25.10.2011
Autor: reverend

Hallo Ms. Snowley,

da ist etwas faul an den Aufgaben.

> Sei [mm](\IR,+,*)[/mm] der Körper der reellen Zahlen. Zeigen Sie,
> dass [mm](\IR^2,\oplus,\odot)[/mm] mit
>  
> [mm]\vektor{ x_{1}\\ x_{2}} \oplus \vektor{ y_{1}\\ y_{2}}[/mm] :=
> [mm]\vektor{ x_{1}+y_{1}\\ x_{2}+y_{2} }[/mm]
>
> für alle [mm]\vektor{x1 \\ x2}, \vektor{y1 \\ y2} \in \IR^2[/mm]
> ebenfalls ein Körper ist.
>  Sei [mm](\IR,+,*)[/mm] der Körper der reellen Zahlen. Zeigen Sie,
> dass [mm](\IR^2,\oplus,\odot)[/mm] mit
>  
> [mm]\vektor{ x_{1}\\ x_{2}} \odot \vektor{ y_{1}\\ y_{2}}[/mm] :=  
> [mm]\vektor{ x_{1}y_{1}-x_{2}y_{2}\\ x_{1}y_{2}+x_{2}y_{1} }[/mm]
>
> für alle [mm]\vektor{x1 \\ x2}, \vektor{y1 \\ y2} \in \IR^2[/mm]
> ebenfalls ein Körper ist.

>

>  huhu Leute.
>  wir haben diese übungsaufgabe aufgekriegt nur unser
> Übungsleiter kann das überhaupt nicht erklären und daher
> weiß wirklich keiner aus unsrer gruppe wie man was
> beweisen muss, in keinster form...
>  es wäre furchbar lieb, wenn mir jemand weiterhelfen
> könnte.

Bei Aufgabe 1 fehlt die Definition der Multiplikation [mm] \odot. [/mm]

Bei Aufgabe 2 fehlt die Definition der Addition [mm] \oplus. [/mm]

Die Aufgaben machen nur zusammen Sinn!

Ansonsten schau doch erst einmal die []Körperaxiome.

Ihr sollt nachweisen, dass die Menge aller Vektoren des [mm] \IR^2 [/mm] mit den definierten Rechenarten einen Körper bildet.

Grüße
reverend


Bezug
                
Bezug
Körper "beweisen": Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 Di 25.10.2011
Autor: EvelynSnowley2311

huhu reverend,

eine genauere definition der addiition/multiplikation hab ich nicht. Die aufgabenstellung ist so richtig abgeschrieben bis auf die tatsache, dass es auf meinem blatt eckige Klammern statt runde sind, falls es einen unterschied machen sollte sowie das plus und mal in vierecken statt kreisen.
lg
evelyn

Bezug
                        
Bezug
Körper "beweisen": Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Di 25.10.2011
Autor: reverend

Hallo nochmal,

die Form der Klammern und die grafische Veränderung des Additions- bzw. Multiplikationszeichens tut nichts zur Sache.

Mein Einwand bleibt bestehen: keine der beiden Aufgaben ist ohne die Definition der anderen lösbar, es sei denn, es gibt eine andere Definition der Multiplikation bzw. Addition.

Grüße
reverend


Bezug
                                
Bezug
Körper "beweisen": Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 Di 25.10.2011
Autor: EvelynSnowley2311

huhu,

welche Art der Definition meinst du beispielsweise? vielleicht kann ich dann verstehen was zum Lösen fehlt.

Bezug
                                        
Bezug
Körper "beweisen": Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Di 25.10.2011
Autor: reverend

Hi,

> welche Art der Definition meinst du beispielsweise?
> vielleicht kann ich dann verstehen was zum Lösen fehlt.

Na, z.B. bei der ersten Aufgabe - wie geht denn Multiplizieren? Über das Addieren haben wir ja etwas erfahren.

Ist z.B. [mm] \vektor{x_1\\x_2}\odot\vektor{y_1\\y_2}=\vektor{x_1*y_1\\x_2*y_2} [/mm]

Oder ist das Ergebnis vielleicht eher [mm] \vektor{x_1^2*x_2^2\\ \wurzel{|x_2*y_2|}} [/mm] oder [mm] \vektor{|x_1y_2-x_2y_1|\\(x_2+y_2)^2} [/mm] oder [mm] \vektor{x_1y_1+1\\x_2y_2-1}? [/mm]

Die normale Skalarmultiplikation von Vektoren kann ja nicht gelten, also
[mm] \vektor{x_1\\x_2}*\vektor{y_1\\y_2}=x_1y_1+x_2y_2 [/mm]
weil das Ergebnis kein Element des Körpers ist.

Grüße
reverend


Bezug
                                                
Bezug
Körper "beweisen": Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:14 Di 25.10.2011
Autor: EvelynSnowley2311

hey,

ich verstehe deine einwende vollkommen aber selsatm ist es trotzdem... ich meine es muss ja lösbar sein, der professor hat hinter seinem doktor noch ein ehrentitel und so^^
vlt ne blöde vermutung aber sind es vielleicht gar keine vektoren?
ich meine sie werden so geschrieben auf den blatt aber prinzipiell hatten wir ja in den ersten 3 wochen seit ich auf der uni bin noch keine vektoren betrachtet ( halt nur in der oberstufe damals).

Bezug
                                                        
Bezug
Körper "beweisen": Antwort
Status: (Antwort) fertig Status 
Datum: 21:25 Di 25.10.2011
Autor: reverend

ahoi, ;-)

> ich verstehe deine einwende vollkommen aber selsatm ist es
> trotzdem... ich meine es muss ja lösbar sein, der
> professor hat hinter seinem doktor noch ein ehrentitel und
> so^^

Oh, dann ist er sicher unfehlbar. Ich habe nur einen Ehrentitel, aber keinen Doktor...
Nee, ganz ehrlich: Fehler kommen halt vor, gern auch auf Übungsblättern. Davor sind nicht einmal Nobelpreisträger gefeit.

>  vlt ne blöde vermutung aber sind es vielleicht gar keine
> vektoren?

Schön, dann sagen wir einfach "geordnete 2-Tupel aus dem [mm]\IR^2[/mm]".

>  ich meine sie werden so geschrieben auf den blatt aber
> prinzipiell hatten wir ja in den ersten 3 wochen seit ich
> auf der uni bin noch keine vektoren betrachtet ( halt nur
> in der oberstufe damals).

Das ist ein guter Einwand. Allerdings ist es gar nicht so einfach, andere Beispiele für unendliche Körper zu finden als die reellen Zahlen. Vektoren (äh, geordnete Tupel) sind dafür aber hervorragend geeignet. Insofern kneifen wahrscheinlich gerade alle die Augen zu, damit Ihr schön viel Arbeit habt. :-)

Ich bleib diesem Thread mal fern, damit mal jemand anders Gelegenheit hat, mir zu widersprechen - oder vielleicht auch dem dekorierten Titelträger.

Nimm das alles nicht so ernst. Ich amüsiere mich gerade, aber nicht über Dich.

Grüße
reverend


Bezug
                                                                
Bezug
Körper "beweisen": Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:48 Di 25.10.2011
Autor: wieschoo

Dann löst man eben die Aufgabe mit dein beiden angegeben Definition und schreibt am Ende des Übungszettels noch einen netten Satz hin, dass die Aufgabe großer Schwachsinn ist.
@reverend: Sei [mm] $\text{Lust vom Aufgabensteller }< \varepsilon,\quad \forall \varepsilon>0$ [/mm]

Also
Aufgabe
Sei [mm](\IR,+,\cdot)[/mm] der Körper der reellen Zahlen. Zeigen Sie, dass   [mm](\IR^2,\oplus,\odot)[/mm] und [mm] \vektor{ x_{1}\\ x_{2}} \oplus \vektor{ y_{1}\\ y_{2}} = \vektor{ x_{1}+y_{1}\\ x_{2}+y_{2} } [/mm]

[mm] \vektor{ x_{1}\\ x_{2}} \odot \vektor{ y_{1}\\ y_{2}} \vektor{ x_{1}y_{1}-x_{2}y_{2}\\ x_{1}y_{2}+x_{2}y_{1} } [/mm]

für alle [mm] \vektor{x1 \\ x2}, \vektor{y1 \\ y2} \in \IR^2 [/mm] ebenfalls ein Körper ist.




Da geht man stupide die Axiome durch:

Ist [mm](\IR^2,+)[/mm] eine abelsche Gruppe?

Wie sieht das neutrale Element aus?
Also wie muss [mm](y_1,y_2)[/mm] gewählt werden, damit
[mm]\vektor{ x_{1}\\ x_{2}} \oplus \vektor{ y_{1}\\ y_{2}}= \vektor{ x_{1}\\ x_{2}} [/mm] gilt.

Wie sehen die inversen Elemente aus?
Assoziativität?

Abelsch?
Sei dazu [mm](x_1,x_2),(y_1,y_2)\in \IR^2[/mm]. zu zeigen ist
[mm]\vektor{ x_{1}\\ x_{2}} \oplus \vektor{ y_{1}\\ y_{2}}= \vektor{ y_{1}\\ y_{2}}\oplus\vektor{ x_{1}\\ x_{2}} [/mm]

Ist [mm](\IR^2\setminus\{\vektor{0\\ 0}\},\oplus,\odot)[/mm] eine abelsche Gruppe.

Bezug
                                                                        
Bezug
Körper "beweisen": Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:03 Di 25.10.2011
Autor: leduart

Hallo
bist du ganz sicher, dass das da als 2 aufgaben steht und du nicht eine aufgabe einfach in 2 geteilt hast? Denn beide als eine aufgefasst ist ne echte aufgabe. vielleicht steht da nur innerhalb der Aufgabe 1. und dann 2. für die 2 definitionen von + und *
gruss leduart


Bezug
        
Bezug
Körper "beweisen": ist die Aufgabe von hier?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:29 Mi 26.10.2011
Autor: felixf

Moin,

stammt die Aufgabe von []diesem Übungsblatt? (Aufgabe 1.4)

LG Felix


Bezug
                
Bezug
Körper "beweisen": Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:39 Mi 26.10.2011
Autor: fred97


> Moin,
>  
> stammt die Aufgabe von
> []diesem Übungsblatt?
> (Aufgabe 1.4)
>  

Hallo Felix,

da spricht viel dafür, denn oben findet man

        Prof. Dr. dr. h. c. Heiner Gonska.

Mir war nicht bekannt , dass man den Ehrendoktor klein schreibt. Ist aber in Ordnung, denn es ist ja kein "richtiger" Doktor.


Gruß FRED


> LG Felix
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]