Kombinatorik Zufallszahlen < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:23 So 29.03.2009 | Autor: | axi0m |
Aufgabe | Jede von n Personen wählt zufällig eine Zahl aus der Menge [mm] \{1,\hdots,N \}, [/mm] wobei 2 [mm] \leq [/mm] n [mm] \leq [/mm] N. Geben sie explizit ein geeignetes Zufallsexperiment [mm] (\Omega,P) [/mm] an, charakterisieren Sie folgendes Ereignisse als Teilmengen von [mm] \Omega, [/mm] und bestimmen sie deren Wahrscheinlichkeiten.
a) Wenigstens 2 Personen haben die selbe Zahl gewählt
b) Die Zahl 1 wurde genau k-mal gewählt
c) Die Zahlen 1 und N wurden gewählt |
Guten Tag zusammen. Ich sitze an ein Paar Klausurvorbereitungsaufgaben und würde mich über die Kommentierung/Korrekturhinweise meiner Lösungen freuen.
Meine Ansätze zu der Aufgabe sind:
Es sei [mm] \Omega [/mm] = [mm] \{1,\ldots,N\}^n [/mm] und [mm] \forall\{\omega \in \Omega} [/mm] : [mm] p(\omega) [/mm] = [mm] \frac{1}{N^n}, [/mm] also laplace-verteilt. Dann ist P(E) = [mm] \sum_{\omega \in E} p(\omega) [/mm] die zu p gehörende diskrete W-Verteilung und [mm] (\Omega,P) [/mm] ist ein diskretes Zufallsexperiment.
a)
A = [mm] \{ \omega \in \Omega : \omega_i = \omega_j \text{ für } i \neq j \text{ mit } i,j \in \{1, \ldots, n\}\}
[/mm]
Wir betrachten nun das Gegenereignis [mm] A^c [/mm] = [mm] [1,...,N]^n [/mm]
Dessen Mächtigkeit ist [mm] |A^c|=\frac{N!}{(N-n)!}
[/mm]
Als Wahrscheinlichkeit für das angegebene Ereignis ergibt sich somit
[mm] P(A)=1-P(A^c)=1-\frac{|A^c|}{|\Omega|}= [/mm] 1 - [mm] \frac{\frac{N!}{(N-n)!}}{N^n} [/mm] = 1 - [mm] \frac{N (N-1) \ldots (N-n+1)}{N^n}
[/mm]
b)
B = [mm] \{ \omega \in \Omega : \sum_{i=1}^{N} 1_{\{1\}} (w_i) = k \} [/mm] (mit [mm] 1_{\{1\}} [/mm] ist hier die Indikatorfunktion gemeint)
Als Wahrscheinlichkeit für B ergibt sich:
P(B) = [mm] \frac{\binom{n}{k} (n-k)!}{N^n} [/mm] = [mm] \frac{\frac{n!}{k!}}{N^n} [/mm] = [mm] \frac{n (n-1) \cdot \ldots \cdots (n-k+1)}{N^n}
[/mm]
Da es [mm] \binom{n}{k} [/mm] mögliche Position für die 1 gibt und (n-k)! Möglichkeiten für die restlichten Zahlen.
c)
C = [mm] \lbrace \omega \in \Omega [/mm] : [mm] \sum_{i=1}^{N} 1_{\{1\}}(\omega_i) \geq [/mm] 1 [mm] \wedge \sum_{i=1}^{N} 1_{\{N\}}(\omega_i) \geq [/mm] 1 [mm] \rbrace
[/mm]
Das Komplement von C ist
[mm] C^c [/mm] = [mm] \{1, \ldots, N-1\}^n \cup \{2, \ldots, N\}^n
[/mm]
und dessen Mächtigkeit nach der Siebformel
[mm] |C^c| [/mm] = [mm] (N-1)^n+(N-1)^n-(N-2)^n
[/mm]
Als Wahrscheinlichkeit ergibt sich somit
P(C)=1 - [mm] \frac{2(N-1)^n - (N-2)^n}{N^n}
[/mm]
Für jeden Hinweis was richtig und was falsch ist wäre ich sehr dankbar.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:23 Mi 01.04.2009 | Autor: | Teufel |
Hi!
Bin leider kein Stochastik-Ass, daher will ich auch nicht meine Hand für meine Antworten ins Feuer legen. ;)
a)
Seh ich genau so.
b)
Das würde ich einfach mit Binomialverteilung machen, weil diese "genau k mal" danach schreit.
[mm] P(X=k)=\vektor{n \\ k}*(\bruch{1}{N})^k*(\bruch{N-1}{N})^{n-k}=\vektor{n \\ k}*\bruch{(N-1)^{n-k}}{N^n}
[/mm]
c)
Die Siebformel sagt mir nichts, aber ich würde da ca. wie bei 1) rangehen.
Also mit [mm] P(\text{"1 und N werden gewählt"})=1-P(\text{"1 und N werden (n mal) nicht gewählt"})=1-(\bruch{N-2}{N})^n
[/mm]
Aber vielleicht guckt nochmal jemand anders drüber.
Teufel
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 12:28 Mi 01.04.2009 | Autor: | axi0m |
Bei b) sehe ich wohl deinen Ansatz, bin mir aber nicht sicher wo meine Überlegung falsch ist.
Zu c) Siebformel ist in dem Fall etwas hochtrabend. Es geht nur darum, dass ich die Mächtigkeit von [mm] C^c [/mm] darstelle durch [mm] |C^c|=|\{1,...,N-1\}^n \cup \{2,...N\}^n|= |\{1,...,N-1\}^n |+|\{2,...N\}^n|-|\{1,...,N-1\}^n \cap \{2,...N\}^n|
[/mm]
Also man zählt bei der Vereinigung die Elemente in der ersten Menge plus die in der zweiten und zieht dann die, die man doppelt gezählt hat, da sie in beiden Mengen sind ab.
Das Problem bei deinem Ansatz ist, dass du nicht berücksichtigst das z.B. n-mal wird eine 1 gewählt durchaus möglich ist. Oder das ingesamt Ergebnisse in denen eine 1 oder ein N vorkommt, aber nicht beides gleichzeitig, erlaubt sind. Mit deinem Ansatz würdest du nur Ergebniss zähle die weder eine 1 noch ein N beinhalten.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:20 So 05.04.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|