www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Kompaktheit und Überdeckung
Kompaktheit und Überdeckung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompaktheit und Überdeckung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:00 Mi 25.04.2007
Autor: max3000

Aufgabe
Nach dem Satz von Heine-Borel ist das halboffene Intervall (0,1] nicht kompakt. Geben Sie eine offene Überdeckung dieses Intervalls an,zu der keine endliche Teilüberdeckung existiert.

Schönen guten Abend.

Ich muss mal wieder hier reinschreiben, weil das solche Aufgaben sind, die mir schon etwas zu komisch sind.

Ich habe auch leider keine Idee oder einen Lösungsansatz dazu, weil für mich die Definition von Kompaktheit voll unlogisch erscheint.

Nochmal zum Wiederholen:
Eine Teilmenge M eines topologischen Raums heißt kompakt, wenn jede offene Überdeckung [mm] M\subseteq\bigcup_{i=1}U_{i} [/mm] eine endliche Teilüberdeckung mit [mm] M\subseteq U_{i_{1}}\cup...\cupU_{i_{n}} [/mm] besitzt.

Für mich wäre nach dieser Definition eine offene Menge auch Kompakt. Oder kann mir das jemand erklären.

Bin echt für jede Hilfe dankbar.

Gruß
Max

        
Bezug
Kompaktheit und Überdeckung: Antwort
Status: (Antwort) fertig Status 
Datum: 02:21 Do 26.04.2007
Autor: MatthiasKr

Hi max,
> Nach dem Satz von Heine-Borel ist das halboffene Intervall
> (0,1] nicht kompakt. Geben Sie eine offene Überdeckung
> dieses Intervalls an,zu der keine endliche Teilüberdeckung
> existiert.
>  Schönen guten Abend.
>  
> Ich muss mal wieder hier reinschreiben, weil das solche
> Aufgaben sind, die mir schon etwas zu komisch sind.
>  
> Ich habe auch leider keine Idee oder einen Lösungsansatz
> dazu, weil für mich die Definition von Kompaktheit voll
> unlogisch erscheint.
>  
> Nochmal zum Wiederholen:
>  Eine Teilmenge M eines topologischen Raums heißt kompakt,
> wenn jede offene Überdeckung [mm]M\subseteq\bigcup_{i=1}U_{i}[/mm]
> eine endliche Teilüberdeckung mit [mm]M\subseteq U_{i_{1}}\cup...\cupU_{i_{n}}[/mm]
> besitzt.
>  
> Für mich wäre nach dieser Definition eine offene Menge auch
> Kompakt. Oder kann mir das jemand erklären.
>  
> Bin echt für jede Hilfe dankbar.

schau dir doch mal die Menge von Intervallen

[mm] $U_i=(\frac1i,1+\frac1i)$ [/mm]

an. Ist das eine ueberdeckung von $(0,1]$? ist sie offen? gibt es eine endliche teilueberdeckung?

VG
Matthias


>  
> Gruß
>  Max


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]