www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Kompaktheit von Operatoren
Kompaktheit von Operatoren < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompaktheit von Operatoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 So 23.11.2014
Autor: Bushman

Aufgabe
Es seien H ein Hilbertraum, T ∈ L(H) kompakt und S ∈ L(H). Weisen Sie nach, dass die Produkte
ST und T S kompakte Operatoren sind.

Hallo liebes Forum,
mich verwirrt die oben beschriebene Aufgabe etwas. Es ist zu zeigen, dass das Produkt eines kompakten Operator mit einem beliebigen Operator kompakt ist (falls ich das richtig verstehe).

Mein Ansatz:

Die Definition eines Kompakten Operator ist doch das eine Folge von endlichdimensionalen Operatoren existiert sodass [mm] ||T-T_n|| [/mm] -> 0 : n-> [mm] \infty [/mm] gilt. Demnach würde auch [mm] ||T-T_n||*S [/mm] -> 0 : n-> /infty gelten.

Ich glaube allerdings nicht, dass man das so sagen kann und würde mich über jede Hilfe freuen.

lg Bushman

weil es verlangt war: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Kompaktheit von Operatoren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 So 23.11.2014
Autor: andyv

Hallo


>  Hallo liebes Forum,
> mich verwirrt die oben beschriebene Aufgabe etwas. Es ist
> zu zeigen, dass das Produkt eines kompakten Operator mit
> einem beliebigen Operator kompakt ist (falls ich das
> richtig verstehe).

Nicht beliebig, sondern stetig.

>
> Mein Ansatz:
>  
> Die Definition eines Kompakten Operator ist doch das eine
> Folge von endlichdimensionalen Operatoren existiert sodass
> [mm]||T-T_n||[/mm] -> 0 : n-> [mm]\infty[/mm] gilt. Demnach würde auch
> [mm]||T-T_n||*S[/mm] -> 0 : n-> /infty gelten.

Ok, im Hilbertraum kann man das als Definition durchgehen lassen.
Sei T kompakt, und [mm] $T_n$ [/mm] eine approximierende Folge mit endlichdimensionalem Bild. Was kannst du über das Bild von $T_nS$ sagen? Gilt [mm] $\|T_nS-TS\|\to [/mm] 0$?

>  
> Ich glaube allerdings nicht, dass man das so sagen kann und
> würde mich über jede Hilfe freuen.
>  
> lg Bushman
>  
> weil es verlangt war: Ich habe diese Frage in keinem Forum
> auf anderen Internetseiten gestellt.
>  

Liebe Grüße


Bezug
                
Bezug
Kompaktheit von Operatoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:48 Mo 24.11.2014
Autor: Bushman

Hallo und erstmal danke für deine Antwort, sry für meine späte Reaktion ich war heute Vormittag nicht zu Hause.

Ich weiß, nicht genau wie ich eine Aussage über das Bild von [mm] T_n*S [/mm] machen kann, da ich diese ja eigentlich nicht kenne. [mm] T_n [/mm] hat ein endlichdimensionales Bild, folgt darauß, dass auch [mm] T_n*S [/mm] ein endlichdimensionales Bild besitzt ? Es würde mir logisch erscheinen aber ich bin mir sehr unsicher. Falls dies gelten sollte müsste doch [mm] \parallel TS-T_nS\parallel [/mm] -> 0 : [mm] T_n [/mm] -> T gelten.

lg


Bezug
                        
Bezug
Kompaktheit von Operatoren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:03 Mo 24.11.2014
Autor: fred97


> Hallo und erstmal danke für deine Antwort, sry für meine
> späte Reaktion ich war heute Vormittag nicht zu Hause.
>
> Ich weiß, nicht genau wie ich eine Aussage über das Bild
> von [mm]T_n*S[/mm] machen kann, da ich diese ja eigentlich nicht
> kenne. [mm]T_n[/mm] hat ein endlichdimensionales Bild, folgt
> darauß, dass auch [mm]T_n*S[/mm] ein endlichdimensionales Bild
> besitzt ?


ja, natürlich. Es ist $(T_nS)(H) [mm] =T_n(S(H)) \subseteq T_n(H)$ [/mm] und [mm] $dimT_n(H) [/mm] < [mm] \infty.$ [/mm]




> Es würde mir logisch erscheinen aber ich bin mir
> sehr unsicher. Falls dies gelten sollte müsste doch
> [mm]\parallel TS-T_nS\parallel[/mm] -> 0 : [mm]T_n[/mm] -> T gelten.

Ja, wenn [mm] ||T_n-T|| \to [/mm] 0, so gilt auch

   $||T_nS-TS|| [mm] \to [/mm] 0,$

denn $||T_nS-TS|| [mm] =||(T_n-T)S|| \le ||T_n-T||*||S||$ [/mm]

Jetzt hätte ich noch eine Frage: welcher Vollpfosten hat Euch eigentlich die obige Def. von "kompakter Operator" gegeben ?

Klar, wie mein Vorredner schon gesagt hat, in Hilberträumen kann man das so machen, aber in bel normierten Räumen taugt Eure "Definition" nichts.

FRED

>  
> lg
>  


Bezug
                                
Bezug
Kompaktheit von Operatoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:35 Mo 24.11.2014
Autor: Bushman

Danke, für die schnelle Hilfe.

Und sry, dass ich vergessen habe bei der Aufgabenstellung zu erwähnen, das ein Hilbertraum vorausgesetzt ist.

Ich weiß nicht, ob es angemessen ist hier noch eine weitere Frage zu stellen oder dazu einen neuen Thread aufzumachen. Aber ich denke die Frage passt gut zum Thema Kompakte Operatoren.

Und zwar soll ich Kompaktheit eines Integraloperators:
T: [mm] L^{2}(\IR) [/mm] -> [mm] L^{2}(\IR) [/mm] : (Tf)(x) = [mm] \integral_{\IR}k(x,y)*f(y)dy [/mm]  ,  [mm] k\in L^{2}(\IR^{2}) [/mm] zeigen. Vorrausgesetzt ist hierbei, dass eine Folge von Treppenfunktionen [mm] k_n [/mm] existiert, sodass [mm] \parallel k-k_n \parallel [/mm] -> 0 : n -> [mm] \infty [/mm] bezüglich der [mm] L^{2} [/mm] Norm gilt.

Unter dieser Vorraussetzung gibt es eine Folge von Operatoren [mm] (T_n [/mm] f)(x) = [mm] \integral_{\IR}k_n(x,y)*f(y)dy [/mm] mit [mm] T_n [/mm] -> T : n -> [mm] \infty. [/mm]

[mm] \parallel T-T_n \parallel [/mm] = [mm] \wurzel{\integral_{\IR}{[\integral_{\IR}k(x,y)*f(y)dy - \integral_{\IR}k_n(x,y)*f(y)dy]^{2} dx}} [/mm]

Jetzt bin ich mir nicht sicher, ob ich einfach behaupten kann, dass [mm] \integral_{\IR}k(x,y)*f(y)dy [/mm] -> [mm] \integral_{\IR}k_n(x,y)*f(y)dy [/mm] : n -> [mm] \infty [/mm] gilt und das ganze somit gegen 0 geht ?



Bezug
                                        
Bezug
Kompaktheit von Operatoren: Antwort
Status: (Antwort) fertig Status 
Datum: 07:08 Di 25.11.2014
Autor: fred97

Das hast Du doch hier

https://matheraum.de/read?t=1042895

schon

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]