Komplexe Folge Divergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:47 Di 02.12.2014 | Autor: | duduknow |
Aufgabe | Sei [mm] x_n [/mm] = [mm] (\frac{2 - i}{2 + i})^n [/mm] und n [mm] \in \mathbb{N}_0. [/mm] Zeigen Sie:
1. [mm] |x_n| [/mm] = 1 [mm] \forall [/mm] n [mm] \in \mathbb{N}_0
[/mm]
2. [mm] (x_n)_{n \in \mathbb{N}_0} [/mm] hat eine konvergente Teilfolge
3. [mm] (x_n)_{n \in \mathbb{N}_0} [/mm] ist nicht konvergent |
Hallo,
ich komme bei dieser Aufgabe bei 3. nicht weiter (die Polarform darf nicht benutzt werden).
1. habe ich mit vollständiger Induktion nachgerechnet. Daraus habe ich dann geschlossen, dass die Folge beschränkt ist und mit Bolzano-Weierstraß folgt, dass es eine konvergente Teilfolge geben muss (ist das richtig?), also 2.
3tens ist, denke ich, nun dadurch zu zeigen, dass es zwei Teilfolgen gibt, die gegen unterschiedliche Werte konvergieren. Grafisch betrachtet sind das die konstanten Teilfolgen der Schnittpunkte von [mm] Im(z^n) [/mm] und [mm] Re(z^n). [/mm] Ich habe aber keinerlei Ansatz, wie ich darauf rechnerisch komme, denn ich habe keinen Ansatz für eine Formel für [mm] Re(z^n) [/mm] und [mm] Im(z^n). [/mm] Wenn ich mir die ersten Glieder der Folge anschaue, ist das wohl irgendwie der Binomialkoeffizient von (Re(z) - [mm] Im(z))^n [/mm] aufgeteilt von [mm] Re(z^3) [/mm] und [mm] Im(z^3) [/mm] - das führt wohl nicht zum Ziel.
Mag mir jemand einen Tipp geben, wie ich bei der Aufgabe verfahre? Habe ich schon bei 1. zu 2. etwas falsch verstanden?
Danke für Ratschläge und mit freundlichen Grüßen
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:02 Di 02.12.2014 | Autor: | abakus |
> Sei [mm]x_n[/mm] = [mm](\frac{2 - i}{2 + i})^n[/mm] und n [mm]\in \mathbb{N}_0.[/mm]
> Zeigen Sie:
> 1. [mm]|x_n|[/mm] = 1 [mm]\forall[/mm] n [mm]\in \mathbb{N}_0[/mm]
> 2. [mm](x_n)_{n \in \mathbb{N}_0}[/mm]
> hat eine konvergente Teilfolge
> 3. [mm](x_n)_{n \in \mathbb{N}_0}[/mm] ist nicht konvergent
> Hallo,
>
> ich komme bei dieser Aufgabe bei 3. nicht weiter (die
> Polarform darf nicht benutzt werden).
>
> 1. habe ich mit vollständiger Induktion nachgerechnet.
> Daraus habe ich dann geschlossen, dass die Folge
> beschränkt ist und mit Bolzano-Weierstraß folgt, dass es
> eine konvergente Teilfolge geben muss (ist das richtig?),
> also 2.
>
> 3tens ist, denke ich, nun dadurch zu zeigen, dass es zwei
> Teilfolgen gibt, die gegen unterschiedliche Werte
> konvergieren. Grafisch betrachtet sind das die konstanten
> Teilfolgen der Schnittpunkte von [mm]Im(z^n)[/mm] und [mm]Re(z^n).[/mm] Ich
> habe aber keinerlei Ansatz, wie ich darauf rechnerisch
> komme, denn ich habe keinen Ansatz für eine Formel für
> [mm]Re(z^n)[/mm] und [mm]Im(z^n).[/mm] Wenn ich mir die ersten Glieder der
> Folge anschaue, ist das wohl irgendwie der
> Binomialkoeffizient von (Re(z) - [mm]Im(z))^n[/mm] aufgeteilt von
> [mm]Re(z^3)[/mm] und [mm]Im(z^3)[/mm] - das führt wohl nicht zum Ziel.
> Mag mir jemand einen Tipp geben, wie ich bei der Aufgabe
> verfahre? Habe ich schon bei 1. zu 2. etwas falsch
> verstanden?
>
> Danke für Ratschläge und mit freundlichen Grüßen
Hallo,
dass die Polarform nicht verwendet werden darf ist ärgerlich.
dann musst du irgendwie mit der Form [mm] $(0,6-0,8i)^n$ [/mm] zurechtkommen (ergibt sich aus der Erweiterung des Bruchs mit 2-i).
Gruß Abakus
|
|
|
|