Komplexes Extremwertproblem < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:31 Do 02.07.2009 | Autor: | Thursday |
Aufgabe | Aus einer Holzplatte, die die Form eines gleichschenkligen Dreiecks hat mit den Seiten c=60, a=b=50 hat, soll ein möglichst großes, rechteckiges Brett herausgeschnitten werden.
Wie viel Prozent Abfall entstehen? |
[Dateianhang nicht öffentlich]
Mein bisheriger Ansatz: Mit Pythagoras habe ich h=40 ausgerechnet. Dann wollte ich mit dem Strahlensatz anfangen: h/c=y/x, also 40/60=y/x, woraus geschlossen werden kann, dass y=2/3*x. Damit wollte ich eine Funktion aufstellen, da deren Flächeninhalt von Rechtecken ja A=ab bzw. in diesem Fall A=xy ist. Da y=2/3*x ist A(y)=2/3*x².
Nun wollte ich davon das Maximum errechnen, also A'(y)=4/3*x. Wenn ich das mit Null gleichsetze, komme ich allerdings nur auf x=0, was irgendwie nicht stimmen kann...
Nun meine Frage: Stimmt dieser Lösungsweg? Wenn ja, habe ich einen dummen kleinen Fehler gemacht - und welchen? Wenn nein - muss man das Minimum der Fläche "um das Rechteck herum" ausrechnen und kann mir da dann jem. helfen?
Vielen Dank im Voraus.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Dateianhänge: Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
|
|
|
|
> Aus einer Holzplatte, die die Form eines gleichschenkligen
> Dreiecks hat mit den Seiten c=60, a=b=50 hat, soll ein
> möglichst großes, rechteckiges Brett herausgeschnitten
> werden.
> Wie viel Prozent Abfall entstehen?
> [img]
> Mein bisheriger Ansatz: Mit Pythagoras habe ich h=40 ausgerechnet. Dann wollte ich mit dem Strahlensatz anfangen: h/c=y/x,
Hallo,
zunächst einmal solltest Du sagen (und Dir selbst klarmachen), was Du mit x und y bezeichnest.
Wenn das die beiden Seiten des Rechtecks sein sollen, dann stimmt Dein Strahlensatz nämlich nicht.
Gruß v. Angela
also 40/60=y/x, woraus geschlossen werden kann, dass y=2/3*x. Damit wollte ich eine Funktion aufstellen, da deren Flächeninhalt von Rechtecken ja A=ab bzw. in diesem Fall A=xy ist. Da y=2/3*x ist A(y)=2/3*x².
> Nun wollte ich davon das Maximum errechnen, also A'(y)=4/3*x. Wenn ich das mit Null gleichsetze, komme ich allerdings nur auf x=0, was irgendwie nicht stimmen kann...
> Nun meine Frage: Stimmt dieser Lösungsweg? Wenn ja, habe ich einen dummen kleinen Fehler gemacht - und welchen? Wenn nein - muss man das Minimum der Fläche "um das Rechteck herum" ausrechnen und kann mir da dann jem. helfen?
>
> Vielen Dank im Voraus.
> Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:44 Do 02.07.2009 | Autor: | Thursday |
Hm, also, ich hatte ja eigentlich ein Bild beigelegt (was nicht ganz so funktioniert hat, scheinbar...?), worauf ich x sowie y eingezeichnet hatte.
Wenn das in Betracht genommen wurde, was genau war dann an dem Strahlensatz falsch? Ich muss zugeben, dass der bei mir etwas eingerostet ist...
|
|
|
|
|
> Hm, also, ich hatte ja eigentlich ein Bild beigelegt (was
> nicht ganz so funktioniert hat, scheinbar...?),
Hallo,
was da nicht funktioniert hat, das war ich.
Ich bemerke die Bilder nur, wenn da ausdrücklich steht: bitte auf das Bild gucken.
> worauf ich
> x sowie y eingezeichnet hatte.
> Wenn das in Betracht genommen wurde, was genau war dann an
> dem Strahlensatz falsch? Ich muss zugeben, dass der bei mir
> etwas eingerostet ist...
Dann solltest Du zunächst mal die Strahlensätze nachschlagen...
Das Zentrum der Strahlen ist ja die Spitze des Dreiecks.
Die beiden Parallenabschnitte sind 60 und y,
die entsprechenden Strahlenabschnitte sind 40 und ???.
daraus ergibt sich: [mm] \bruch{40}{60}= [/mm] ???
Gruß v. Angela
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:00 Do 02.07.2009 | Autor: | Thursday |
Oh ja, ich habe die Strahlensätze auch nachgeschlagen und danach diese Formel aufgestellt ^^° Scheinbar hat's nicht ganz so gut geklappt, wie ich erhofft hatte.
Was würdest du denn sagen, was für einen Strahlensatz ich mithilfe der Ziffern & x und y aufstellen könnte? Die Aufgabe müsste lt. meiner Lehrerin eigentlich unkompliziert sein.
|
|
|
|
|
> Was würdest du denn sagen, was für einen Strahlensatz ich
> mithilfe der Ziffern & x und y aufstellen könnte? Die
> Aufgabe müsste lt. meiner Lehrerin eigentlich
> unkompliziert sein.
Hallo,
sie ist auch unkompliziert, und abgesehen von dem kleinen Detail läuft's doch auch ganz gut.
ist Dir denn aufgefallen, daß Dein Strahlenabschnitt x gar keinen Kontakt zum Zentrum, also zur Dreiecksspitze hat?
Guck mal, hier gibt's die Strahlensätze in schön bunt.
Gruß v. Angela
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:38 Do 02.07.2009 | Autor: | Thursday |
Die Strahlensätze für Dummies sind echt nicht schlecht, auch ohne funktionierenden Link, Google ist ja leicht bedienbar... :D
Trotzdem stehe ich gerade, glaube ich, auf dem Schlauch. Ich schätze mal, a bzw b ist Teil des Strahlensatzes; allerdings sehe ich da keine einzige Parallele. :(
|
|
|
|
|
Hallo,
schaue dir deine Skizze an, parallel verlaufen die (rote) Seite y von deinem Rechteck und die Strecke c=60 von deinem Dreieck, Ausgangspunkt für deinen Strahlensatz ist der Punkt C
[mm] \bruch{40}{30}=
[/mm]
30 weil du nur die halbe Seite c hast
jetzt die rechte Seite, starte wieder am Punkt C, senkrecht nach unten, bis zum Schnittpunkt mit der Seite y, überlege dir, wie du diese Strecke angeben kannst, bedenke 40 kennst du, was ist davon zu subtrahieren ....
Steffi
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:13 Do 02.07.2009 | Autor: | Thursday |
Nur, um sicher zu gehen, dass ich das jetzt richtig verstanden habe - das wäre dann 40/30=40-x/0,5*y?
Also y=60-1,5x, was dann zusammen mit der Flächeninhaltsformel A(x)=-1,5x²+60x wäre und das Maximum daher an x=20 (und y=30) liegen würde? Dann ist A=600 und A(Dreieck)=1200, sodass 50% wegfallen.
Vielen Dank für die Hilfe =)
|
|
|
|
|
> Nur, um sicher zu gehen, dass ich das jetzt richtig
> verstanden habe - das wäre dann 40/30=(40-x)/(0,5*y)?
Hallo,
ja, so ist das richtig.
> Also y=60-1,5x, was dann zusammen mit der
> Flächeninhaltsformel A(x)=-1,5x²+60x
Ja.
> wäre und das
> Maximum daher an x=20 (und y=30) liegen würde?
Genau.
> Dann ist
> A=600 und A(Dreieck)=1200, sodass 50% wegfallen.
Ja.
Gruß v. Angela
>
> Vielen Dank für die Hilfe =)
|
|
|
|