www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Kompplexe Ableitung
Kompplexe Ableitung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompplexe Ableitung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:25 Sa 11.11.2006
Autor: papillon

Aufgabe
Untersuchen Sie F(z)=Ln(z)

1. Gelten die Cauchy-Riemann Gleichungen?

2. Ist f komplex differenzierbar?

Hallo!

1. Da gilt [mm] f(z)=\ln(x^{2}+y^{2})+i*(arctan(\bruch{y}{x})+2k\pi) [/mm]  ,

ergeben die partiellen Ableitungen du/dx=dv/dy und du/dy=-dy/dx, dass die CR-Gleichungen erfüllt sind.

2. Da die CR-Gleichungen erfüllt sind, ist f differenzierbar, wenn die partiellen Ableitungen stetig sind. Dies ist erfüllt für [mm] z\not=0. [/mm]

Also ist f für alle [mm] z\not=0 [/mm] komplex differenzierbar.

Ist das alles richtig und ausreichend soweit?

        
Bezug
Kompplexe Ableitung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mo 13.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]