Konjugationsklassen D_n < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 22:13 So 08.11.2015 | Autor: | sissile |
Aufgabe | Es sei n [mm] \ge [/mm] 3. Finden Sie alle Konjugationsklassen der [mm] D_n [/mm] und beweisen Sie, dass [mm] D_n [/mm] genau (n+6)/2 (bzw. (n+3)/2) Konjugationsklassen besitzt, wenn n gerade bzw. ungerade ist. |
Hallo
[mm] D_n=\{ \alpha^i \circ \beta^j | 0 \le i < n, j \in \{0,1\}\}
[/mm]
[mm] \alpha=(1...n)
[/mm]
[mm] \beta= \begin{pmatrix} 1 & 2 &3&..&n-1&n\\ 1 & n &n-1&..&3&2\end{pmatrix}
[/mm]
Konjugationsklasse von [mm] \alpha^i [/mm] besteh jeweils aus [mm] \alpha^i [/mm] und [mm] \alpha^{-i}
[/mm]
[mm] \alpha^k \circ \alpha^i \circ \alpha^{-k}=\alpha^i
[/mm]
[mm] \alpha^k \beta \circ \alpha^i \circ (\alpha^k \beta)^{-1}=...=\alpha^{-i}
[/mm]
Konjugationsklasse von [mm] \alpha^i \circ \beta
[/mm]
Zuerst habe ich induktiv gezeigt, dass [mm] \alpha^s \beta \alpha^{-s}= \alpha^{2s} \beta \forall [/mm] 0 [mm] \le [/mm] s < n
Dann gilt: [mm] \alpha^s \circ (\alpha^i \beta) \circ \alpha^{-s} [/mm] = [mm] \alpha^i \alpha^s \beta \alpha^{-s}=\alpha^i \alpha^{2s} \beta=\alpha^{i+2s}\beta
[/mm]
und [mm] \alpha^s \beta \circ(\alpha^i \beta)\circ(\alpha^s \beta)^{-1}=\alpha^s \beta \circ (\alpha^i \beta) \circ (\beta^{-1} \alpha^{-s})=\alpha^s (\beta \alpha^i)\alpha^{-s}=\alpha^s (\alpha^{-i}\circ \beta)\alpha^{-s}= \alpha^{-i} \alpha^{s} \beta \alpha^{-s}=\alpha^{-i+2s} \beta
[/mm]
[mm] \alpha^i \beta \sim \alpha^k \beta \iff [/mm] k [mm] \equiv [/mm] 2s+i (mod n) [mm] \vee [/mm] k [mm] \equiv [/mm] 2s-i (mod n)
Fall 1: n gerade d.h. n=2m
Habe ich schon gezeigt indem ich zeigte: [mm] \alpha^i \beta [/mm] zu [mm] \alpha^k \beta [/mm] konjugiert [mm] \iff [/mm] i,k gerade oder i,k ungerade
Mir fehlt:
Fall 2:n ungerade d.h. n=2m+1
Ich will zeigen alle Spiegelungen bilden nur eine Konjugationsklasse.
Seien [mm] \alpha^i \beta [/mm] und [mm] \alpha^k \beta \in D_n
[/mm]
Sind i,k gerade so folgt i=2l,k=2u mit l,u [mm] \in \mathbb{Z}:
[/mm]
O.B.d.A i>k
[mm] \alpha^{l-u} \alpha^k \beta \alpha^{l-u}= \alpha^{l-u} \alpha^{2u}\beta \alpha^{l-u}=\alpha^{2u+2(l-u)} \beta=\alpha^{2l}\beta=\alpha^i \beta
[/mm]
Sind i,k ungerade so folgt i=2l-1,k=2u-1 mit l,u [mm] \in \mathbb{Z}:
[/mm]
O.B.d.A. i>k
[mm] \alpha^{l-u} \alpha^k \beta \alpha^{l-u}=\alpha^{l-u} \alpha^{2u-1}\beta \alpha^{l-u}= \alpha^{2u-1+2(l-u)} \beta=\alpha^{2l-1}\beta=\alpha^i \beta
[/mm]
Nun fehlt noch i gerade und k ungerade, i=2l und k=2u-1 mit l,u [mm] \in \mathbb{Z}
[/mm]
Wie zeige ich in diesem Fall dass [mm] \alpha^i \beta [/mm] zu [mm] \alpha^k \beta [/mm] konjugiert ist?
Funktioniert bei euch der Formeledtitor auch nicht?
Bei http://www.matheboard.de/formeleditor.php kann man meine Passagen eintippen um die Formeln zu sehen.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:20 Di 10.11.2015 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:40 Fr 13.11.2015 | Autor: | sissile |
Jetzt wo der Formeleditor wieder geht, kann man die Frage nochmal reaktivieren?
Ich hätte zwar nun eine Lösung zu dem Fall n ungerade aber würde gerne wissen ob das vorher im Beitrag 1 alles stimmt!
LG,
sissi
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:52 Sa 14.11.2015 | Autor: | hippias |
Ich finde das Rechnen mit Elementen nicht so vergnüglich. Daher schlage ich einen leicht anderen Weg vor, statt mich durch Deine Rechnung durchzukämpfen (die aber sicherlich richtig ist).
Setze [mm] $A:=<\alpha>$ [/mm] und [mm] $B:=<\beta>$. [/mm] Dann ist [mm] $D_{n}= [/mm] AB$, [mm] $A\cap [/mm] B=1$, $|A|=n$ und $|B|=2$. Schliesslich brauche ich noch, dass [mm] $\alpha^{\beta}= \alpha^{-1}$ [/mm] ist.
Beachte, somit [mm] $a^{\beta}= a^{-1}$ [/mm] für alle [mm] $a\in [/mm] A$ gilt. Damit folgt:
Ist $n$ gerade, so ist [mm] $C_{A}(B)= <\alpha^{\frac{n}{2}}>$, [/mm] also [mm] $|C_{A}(B)|=2$.
[/mm]
Ist $n$ ungerade, so ist [mm] $C_{A}(B)= [/mm] 1$.
Umgekehrt folgt damit, dass für [mm] $1\neq a\in [/mm] A$ gilt, dass [mm] $C_{B}(a)=B$ [/mm] genau dann, wenn $o(a)=2$ ist; anderenfalls ist [mm] $C_{B}(a)=1$.
[/mm]
Mit der Dedekindidentität folgt, dass [mm] $C_{D_{n}}(\beta)= BC_{A}(\beta)$. [/mm] Also ist [mm] $|D_{n}:C_{D_{n}}(\beta)|= \begin{cases} n & n\mbox{ ungerade}\\ \frac{n}{2} & n\mbox{ gerade}\end{cases}$. [/mm] Dies ist die Länge des Orbits von [mm] $\beta$.
[/mm]
Für [mm] $1\neq a\in [/mm] A$ ist [mm] $C_{D_{n}}(a)= AC_{B}(a)$. [/mm] Also ist [mm] $|D_{n}:C_{D_{n}}(a)|= \begin{cases} 2 & o(a)\neq 2\\ 1 & o(a)=2\end{cases}$. [/mm] Dies ist die Länge des Orbits von $a$.
Ich betrachte nun den Fall $n$ ungerade:
Die Konjugationsklasse von [mm] $\beta$ [/mm] umfasst also genau $n$ Elemente. Die Konjugationsklassen von [mm] $1\neq a\in [/mm] A$ umfassen genau $2$ Elemente: $a$ und [mm] $a^{-1}$. [/mm] $A$ zerfällt somit in [mm] $\frac{n-1}{2}$ [/mm] Klassen mit diesen $2$ Elementen und $1$. [mm] $D_{n}$ [/mm] ist damit ausgeschöpft: weitere Klassen gibt es nicht.
Sei $n$ gerade: Die Konjugationsklassen von [mm] $1\neq a\in [/mm] A$, [mm] $o(a)\neq [/mm] 2$, umfassen genau $2$ Elemente: $a$ und [mm] $a^{-1}$. [/mm] Beachte, dass $A$ genau eine Involution besitzt.
$A$ zerfällt somit in [mm] $\frac{n-2}{2}$ [/mm] Klassen mit $2$ Elementen und $2$ Klassen mit einem Element.
Die Konjugationsklasse von [mm] $\beta$ [/mm] umfasst genau [mm] $\frac{n}{2}$ [/mm] Elemente. Betrachte [mm] $\beta':=\alpha\beta$. [/mm] Rechne nach, dass [mm] $o(\beta')=2$ [/mm] gilt, und dass [mm] $\beta$ [/mm] und [mm] $\beta'$ [/mm] nicht in [mm] $D_{n}$ [/mm] konjugiert sind.
Dann gilt analog, dass der Orbit von [mm] $\beta'$ [/mm] die Länge [mm] $\frac{n}{2}$ [/mm] hat. Damit ist [mm] $D_{n}$ [/mm] ausgeschöpft. Weitere Klassen gibt es nicht.
|
|
|
|