Konv. in Vt./stoch. Konv. < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 15:09 Di 23.12.2008 | Autor: | ThommyM |
Ich grübel jetzt schon einige Zeig an einem Problem, komme aber auf keine Lösung. Und zwar habe ich folgende Situation:
Es sei [mm]\left(X_n\right)[/mm] eine Folge von Zufallsvektoren und [mm]X_0[/mm] ein konstanter Vektor, sodass [mm]\wurzel{n}\left(X_n-X_0\right)[/mm] für [mm]n\to\infty[/mm] in Verteilung gegen einen Zufallsvektor konvergiert, der multivariat normalverteilt ist mit Erwartungswertvektor [mm]0[/mm] und Kovarianzmatrix [mm]\Sigma[/mm]. Außerdem konvergiert eine Folge von Zufallsvektoren [mm]\left(Y_n\right)[/mm] für [mm]n\to\infty[/mm] stochastisch gegen [mm]X_0[/mm]. Konvergiert dann auch [mm]\wurzel{n}\left(X_n-Y_n\right)[/mm] für [mm]n\to\infty[/mm] in Verteilung gegen einen multivariat normalverteilten Zufallsvektor mit Erwartungswertvektor [mm]0[/mm] und Kovarianzmatrix [mm]\Sigma[/mm]???
Meine Idee war folgende:
Es gilt ja [mm]\wurzel{n}\left(X_n-Y_n\right)=\wurzel{n}\left(X_n-X_0+X_0-Y_n\right)=\wurzel{n}\left(X_n-X_0\right)+\wurzel{n}\left(X_0-Y_n\right)[/mm]. Der erste Summand konvergiert ja in Verteilung gegen die multivariate Normalverteilung. Aber konvergiert der zweite Summand immer noch stochastisch gegen null? Dann würde das ganze ja mit den Rechenregeln für Grenzverteilungen in Verteilung gegen die multivariate Normalverteilung konvergieren. Oder gibt es evtl. sogar eine Regel für den vorliegenden Fall?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:10 Di 23.12.2008 | Autor: | ThommyM |
Habe leider die falsche Zeit angegeben. Eine Antwort interessiert mich auch, wenn es ein paar Tage dauert!!! Danke!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:34 Di 23.12.2008 | Autor: | Blech |
Kurzantwort: ??
Ich dachte, ich wüßte, wo man den Beweis finden kann (komm nur grad nicht ran), aber mir kamen gerade zwei ernsthafte Probleme:
1. Du hast keine Forderung nach einer bestimmten Konvergenzgeschwindigkeit von [mm] $Y_n$. [/mm] Da Du den Abstand zu [mm] $X_0$ [/mm] mit [mm] $\sqrt{n}$ [/mm] multiplizierst, brauchst Du da aber auf jeden Fall was.
((( 2. Mal 1-dim: [mm] $\lim P(\sqrt{n}(X_n-Y_n)\leq x)=\lim P(\sqrt{n}(X_n-X_0)\leq x+\sqrt{n}(Y_n-X_0))\overset{\text{!}}{\to} P(\sqrt{n}(X_n-X_0)\leq [/mm] x)$
Nun kann aber sehr wohl [mm] $Y_n
d.h. Du mußt auf jeden Fall noch um einiges einschränken. [mm] ($Y_n$ [/mm] ausreichend schnell konvergent, [mm] $X_n$ [/mm] hat stetige Vtlgsfkt)
Sofern das erfüllt ist, sollte doch gehen:
[mm] $P(\sqrt{n}(X_n-Y_n)\leq x)=P(\sqrt{n}(X_n-X_0)\leq x+\sqrt{n}(Y_n-X_0))\leq P(\sqrt{n}(X_n-X_0)\leq x+\varepsilon_n\ [/mm] |\ [mm] \sqrt{n}(Y_n-X_0)\leq\varepsilon_n)*P(\sqrt{n}(Y_n-X_0)\leq\varepsilon_n)=\underbrace{P(\sqrt{n}(X_n-X_0)\leq x+\varepsilon_n)}_{\to P(\sqrt{n}(X_n-X_0)\leq x)}*\underbrace{P(\sqrt{n}(Y_n-X_0)\leq\varepsilon_n)}_{\to 1}\to P(\sqrt{n}(X_n-X_0)\leq [/mm] x)$
Den Fehler bei [mm] $P(\sqrt{n}(X_n-X_0)\leq x+\varepsilon_n)$ [/mm] kann man abschätzen, weil wir die maximale Steigung der Vtlgsfkt kennen, also konvergiert das ganze wie angegeben. Abschätzung nach unten funktioniert genauso.
Oder überseh ich hier was?
ciao
Stefan
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:25 Do 01.01.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|