www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Konvergente Folge
Konvergente Folge < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergente Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 Mi 02.11.2005
Autor: Ernesto

habe Probleme folgendes zu Beweisen

Gegeben sei eine konvergente Folge (an) m [mm] \in [/mm] N, deren Elemente an ganze Zahlen
sind. Zeige, das die Menge (an : [mm] n\in [/mm] N ) endlich ist . Gilt auch djie Umkehrung ???

Die argumentation der Konvergenz ist doch das eine Folge gegen einen Grenzwert konvergiert wenn es einen N gibt  ab dem alle Folgenglieder in dieser Umgebung liegen
kann man das darauf anwenden

Gruß Thomas

        
Bezug
Konvergente Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Mi 02.11.2005
Autor: Hanno

Hallo Ernesto!

Die Folge der [mm] $a_n$ [/mm] konvergiert genau dann gegen $a$, wenn es zu jedem [mm] $\epsilon\in \IR^+$ [/mm] ein [mm] $n_\epsilon\in \IN$ [/mm] so gibt, dass [mm] $|a_n-a|<\epsilon$ [/mm] für alle [mm] $n\in\IN$ [/mm] mit [mm] $n\geq N_\epsilon$. [/mm] Nun wähle [mm] $\epsilon$ [/mm] einfach so, dass die [mm] $\epsilon$-Umgebung [/mm] von $a$ nur eine einzige ganze Zahl, sagen wir $b$, beinhaltet. Dann ist [mm] $a_n=b$ [/mm] für alle [mm] $\IN\ni n\geq N_\epsilon$ [/mm] und insbesondere [mm] $\{a_n|n\in\IN\}=\{a_n|n\in \{1,2,...,N_\epsilon-1\}\}\cup \{b\}$, [/mm] also endlich.

Die Umkehrung gilt keinesfalls, nimm z.B. [mm] $((-1)^n)_{n\in \IN}$. [/mm]


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]