Konvergenz Fourier L1-Fkt < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo,
es geht um eine (reellwertige) Funktion [mm] $\varphi\in L^1(\partial\mathbb{D})$ [/mm] mit Fourierkoeffizienten [mm] $a_k, b_k$. [/mm] Die Fourierreihe wäre also [mm] $\frac{a_0}{2}+\sum_{k=1}^\infty \left(a_k\cos kx + b_k\sin kx\right)$.
[/mm]
Vorausgesetzt ist, dass [mm] $\frac{\pi}{2}\sum\limits_{k=1}^\infty k(a_k^2+b_k^2)=:M$ [/mm] endlich ist. Nun soll gezeigt werden, dass [mm] $\varphi\in L^2$ [/mm] ist.
In dem Skript, das ich lese, wird hierzu folgendes gemacht:
[mm] $||\varphi-\frac{a_0}{2}||^2_{L^2} [/mm] = [mm] \pi\sum_{k=1}^\infty (a_k^2+b_k^2) \leq [/mm] 2M$, also [mm] $\varphi\in L^2$, [/mm] wobei die erste Gleichheit nach Ersetzen von [mm] $\varphi$ [/mm] durch dessen Fourierreihe aus den Orthogonalitätsrelationen folgt. Aber setzt man an dieser Stelle nicht schon ein, dass [mm] $\varphi\in L^2$? [/mm] Oder woher bekommt man, dass man [mm] $\varphi$ [/mm] durch die Fourierreihe ersetzen kann, folgt die Konvergenz dieser Reihe gegen [mm] $\varphi$ [/mm] aus der Voraussetzung?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:20 So 29.11.2015 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|