Konvergenz Potenzreihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:00 Di 04.06.2013 | Autor: | lisa2802 |
Hallo ihr Lieben,
Ich bereite mich momentan auf meine Modulprüfung Analysis 1&2 vor.
Und kann nirgends finden wie man die Konvergenz bei komplexen Potenzreihen auf dem Rand des Konvergenzkreises bestimmen kann.
Innerhalb des Konvergenzkreises mit dem radius r und dem Mittelpunkt [mm] z_o [/mm] konvergiert die Potenzreihe, außerhalb divergiert sie aber was ist auf dem Rand? Dort muss man das doch gesondert prüfen, aber auf dem Rand liegen ja "endlich viele"(?) Punkte die zu überprüfen sind?
Wie geht man da vor? Im reellen ist das ja "einfach" beim Konvergenzintervall die zwei Randpunkte....
Danke
Gruß
Lisa28ß2
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:10 Di 04.06.2013 | Autor: | fred97 |
> Hallo ihr Lieben,
>
> Ich bereite mich momentan auf meine Modulprüfung Analysis
> 1&2 vor.
>
> Und kann nirgends finden wie man die Konvergenz bei
> komplexen Potenzreihen auf dem Rand des Konvergenzkreises
> bestimmen kann.
Dafür gibts kein Kochrezept !
>
> Innerhalb des Konvergenzkreises mit dem radius r und dem
> Mittelpunkt [mm]z_o[/mm] konvergiert die Potenzreihe, außerhalb
> divergiert sie aber was ist auf dem Rand? Dort muss man das
> doch gesondert prüfen, aber auf dem Rand liegen ja
> "endlich viele"(?) Punkte die zu überprüfen sind?
Nein. Unendlich viele.
> Wie geht man da vor?
Wie gesagt, ein Kochrezept gibts nicht
FRED
> Im reellen ist das ja "einfach" beim
> Konvergenzintervall die zwei Randpunkte....
>
>
> Danke
>
> Gruß
> Lisa28ß2
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:15 Di 04.06.2013 | Autor: | lisa2802 |
> > Hallo ihr Lieben,
> >
> > Ich bereite mich momentan auf meine Modulprüfung Analysis
> > 1&2 vor.
> >
> > Und kann nirgends finden wie man die Konvergenz bei
> > komplexen Potenzreihen auf dem Rand des Konvergenzkreises
> > bestimmen kann.
>
> Dafür gibts kein Kochrezept !
> >
> > Innerhalb des Konvergenzkreises mit dem radius r und dem
> > Mittelpunkt [mm]z_o[/mm] konvergiert die Potenzreihe, außerhalb
> > divergiert sie aber was ist auf dem Rand? Dort muss man das
> > doch gesondert prüfen, aber auf dem Rand liegen ja
> > "endlich viele"(?) Punkte die zu überprüfen sind?
>
>
> Nein. Unendlich viele.
Okay gut da war ich mir nicht sicher. Danke
>
>
>
> > Wie geht man da vor?
>
> Wie gesagt, ein Kochrezept gibts nicht
>
> FRED
>
>
> > Im reellen ist das ja "einfach" beim
> > Konvergenzintervall die zwei Randpunkte....
> >
> >
> > Danke
> >
> > Gruß
> > Lisa28ß2
>
Also wenn ich dann z.B in der Prüfung über den Konvergenzkreis erzähle und mein Prof dann fragt wie es auf dem Rand aussieht sag ich dann dass man da keine allgemeine Aussage treffen kann? denn "unendliche viele" Punkte kann man ja so oder so nicht überprüfen? Oder dass man sich punkte aussucht und für diese prüft?
Wenn der Konvergenzkreis eine oder beide Achsen schneidet was ist denn dann an den punkten?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:19 Di 04.06.2013 | Autor: | fred97 |
> > > Hallo ihr Lieben,
> > >
> > > Ich bereite mich momentan auf meine Modulprüfung Analysis
> > > 1&2 vor.
> > >
> > > Und kann nirgends finden wie man die Konvergenz bei
> > > komplexen Potenzreihen auf dem Rand des Konvergenzkreises
> > > bestimmen kann.
> >
> > Dafür gibts kein Kochrezept !
> > >
> > > Innerhalb des Konvergenzkreises mit dem radius r und dem
> > > Mittelpunkt [mm]z_o[/mm] konvergiert die Potenzreihe, außerhalb
> > > divergiert sie aber was ist auf dem Rand? Dort muss man das
> > > doch gesondert prüfen, aber auf dem Rand liegen ja
> > > "endlich viele"(?) Punkte die zu überprüfen sind?
> >
> >
> > Nein. Unendlich viele.
> Okay gut da war ich mir nicht sicher. Danke
> >
> >
> >
> > > Wie geht man da vor?
> >
> > Wie gesagt, ein Kochrezept gibts nicht
> >
> > FRED
> >
> >
> > > Im reellen ist das ja "einfach" beim
> > > Konvergenzintervall die zwei Randpunkte....
> > >
> > >
> > > Danke
> > >
> > > Gruß
> > > Lisa28ß2
> >
>
> Also wenn ich dann z.B in der Prüfung über den
> Konvergenzkreis erzähle und mein Prof dann fragt wie es
> auf dem Rand aussieht sag ich dann dass man da keine
> allgemeine Aussage treffen kann?
Ja
> denn "unendliche viele"
> Punkte kann man ja so oder so nicht überprüfen?
Das sag dem Prof. lieber nicht so ! Ob man "unendliche viele" Punkte überprüfen kann, hängt von der gegebenen Potenzreihe ab.
Manchmal kann mans, manchmal nicht.
> Oder dass
> man sich punkte aussucht und für diese prüft?
>
> Wenn der Konvergenzkreis eine oder beide Achsen schneidet
> was ist denn dann an den punkten?
Hä ? Was soll da sein ? Jedenfalls nix besonderes
FRED
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:21 Di 04.06.2013 | Autor: | lisa2802 |
Danke!
|
|
|
|