www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz einer Reihe
Konvergenz einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:43 Do 07.12.2006
Autor: martin1985

Hallo,
ich habe mehrere aufgaben bei denen ein bestimmter Grenzewert einer Reihe bestimmt werden soll. bisher haben wir immer nur gezeigt ob eine reihe überhaupt konvergiert oder nicht.

Die erste Aufgabe ist: Man zeige:
[mm]\summe_{i=0}^{\infty}[/mm][mm]\bruch{1}{(2n+1)^2}[/mm] = [mm]\bruch{3}{4}\gamma[/mm] mit [mm]\gamma = \bruch{\pi^2}{8}[/mm]

wie gehe ic an sowas überhaupt heran?

mfg und vielen dank

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 Do 07.12.2006
Autor: Leopold_Gast

Ohne spezielle Kenntnisse z.B. aus der Reihenlehre, der Integralrechnung oder über Eigenschaften spezieller Funktionen ist diese Aufgabe nicht zu lösen. Vielleicht habt ihr so etwas wie

[mm]\sum_{n=1}^{\infty}~\frac{1}{n^2} = \frac{\pi^2}{6}[/mm]

in der Vorlesung bereits gezeigt. Dann kann man das verwenden, um den gesuchten Reihenwert mit ein paar Rechentricks zu ermitteln. Manchmal erhält man solche Reihenwerte auch durch Spezialisierung in Reihendarstellungen geeigneter Funktionen oder Spezialisierungen in gewissen Funktionalgleichungen.

Bezug
                
Bezug
Konvergenz einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:32 Do 07.12.2006
Autor: martin1985

ja das wurde uns in der vorlesung gezeigt, habe jetzt so eoiniges probiert, das irgendwie umzuformen, bin aber auf nichts sinnvolles gekommen bis jetzt.. kannst du mir evtl noche inen tip geben?

mfg martin

Bezug
                        
Bezug
Konvergenz einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:17 Do 07.12.2006
Autor: Leopold_Gast

[mm]q = \sum_{n=1}^{\infty}~\frac{1}{n^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \ldots[/mm]

Das ist die Summe über alle Stammbrüche mit einer Quadratzahl im Nenner.

[mm]g = \sum_{n=1}^{\infty}~\frac{1}{(2n)^2} = \frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + \ldots[/mm]

Das ist die Summe über alle Stammbrüche mit einer geraden Quadratzahl im Nenner.

[mm]u = \sum_{n=0}^{\infty}~\frac{1}{(2n+1)^2} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \ldots[/mm]

Das ist die Summe über alle Stammbrüche mit einer ungeraden Quadratzahl im Nenner.

Und offensichtlich gilt

[mm]u + g = q[/mm]

Aber es gilt ebenso

[mm]g = \frac{1}{4} \, q[/mm]

Warum?
Und aus diesen beiden Gleichungen läßt sich [mm]u[/mm] berechnen, da ja der Reihenwert [mm]q[/mm] bekannt ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]