www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz einer Reihe
Konvergenz einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Reihe: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:33 So 10.12.2006
Autor: Carty

Aufgabe
[mm] \summe_{k=0}^{n} \left( \bruch{-1}{2} \right)^k [/mm] + [mm] \left( \bruch{1}{2} \right)^k [/mm]

hallo,
ich habe irgendwie garkeinen richtigen ansatz um den grenzwert einer reihe auszurechnen. folgen sind absolut kein problem, aber wie macht man das bei solch einer reihe??


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz einer Reihe: geometrische Reihe(n)
Status: (Antwort) fertig Status 
Datum: 19:45 So 10.12.2006
Autor: Loddar

Hallo Carty!


Zerlge diese Summe in zwei Teilsummen und Du hast doch zwei wunderschöne geometrische Reihen, deren Grenzwert (bzw. die entsprechende Formel) Du doch sicherlich kennst:

[mm] $\summe_{k=0}^{n} \left[\left( -\bruch{1}{2} \right)^k+\left( \bruch{1}{2} \right)^k\right] [/mm] \ = \ [mm] \summe_{k=0}^{n} \left( -\bruch{1}{2} \right)^k+\summe_{k=0}^{n}\left( \bruch{1}{2} \right)^k$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Konvergenz einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:44 So 10.12.2006
Autor: Carty

hallo loddar,
sorry aber wir hatten bis jetzt keine formel oder so für reihen.
im skript steht nur dass irgendwas ausgeklammert wird ohne irgendwelche formeln :(

Bezug
                        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Mo 11.12.2006
Autor: vicky

Hallo,

hier nochmal die Definition. Das sollte Dir auf die Sprünge helfen.
Die Reihe [mm] \summe_{n=0}^{\infty}x^n [/mm] konvergiert für alle |x|<1 mit dem Grenzwert
[mm] \summe_{n=0}^{\infty} x^n [/mm] = [mm] \bruch{1}{1-x}. [/mm]
Jetzt mußt du nur noch Dein x in die Gleichung oben einsetzen und schon solltest du den Grenzwert haben:)

Gruß
vicky

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]