Konvergenz einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Man soll die Reihe auf Konvergenz untersuchen:
[mm] \summe_{n=1}^{\infty}(1/n [/mm] + [mm] (-1)^n*1/\wurzel{n}) [/mm] |
Also die Reihe [mm] \summe_{n=1}^{\infty}((-1)^n*1/\wurzel{n}) [/mm] konvergiert ja nach dem Leibnizkriterium.
Und die Reihe [mm] \summe_{n=1}^{\infty}(1/n) [/mm] ist ja die harmonische Reihe und ist divergent.
Kann ich jetzt eine Aussage über die Konvergenz der ganzen Reihe sagen oder gibt es eine andere Möglichkeit, um die Konvergenz zu überprüfen?
|
|
|
|
Du vermutest wohl richtig: du bist fertig.
Die Zerlegung in zwei Reihen führt hier zum Ziel, wenn das Ergebnis eins der folgenden beiden ist:
konvergent+konvergent (=konvergent)
konvergent+divergent (=divergent)
Bei "divergent+divergent" gibt es verschiedene Möglichkeiten:
beide gegen [mm] +\infty [/mm] oder beide gegen [mm] -\infty \Rightarrow [/mm] divergent
eine Reihe gegen [mm] +\infty, [/mm] die andere gegen [mm] -\infty \Rightarrow [/mm] weitere Untersuchung nötig
Im übrigen sieht Deine Reihe so aus, als könnte die Anwendung des Quotientenkriteriums weiterhelfen.
|
|
|
|