Konvergenz von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:38 Mi 19.11.2014 | Autor: | love |
HAllo Leute,
ich soll die Folge [mm] 1+\bruch{2}{3}+\bruch{3}{9}+.. [/mm] als Reihe aufschreiben. Die lautet dann
[mm] \summe_{k=0}^{\infty} \bruch{k+1}^{3^k} [/mm] ich habe es versucht mit dem wurzelkriterium zu lösen aber wie kann ich denn die k-te-Wurzel von k+1 ziehen? Bei mir kam als Grenzwert [mm] \bruch{1}{3} [/mm] raus, was für Konvergenz spricht.
2. ich kann die Folge nicht als Reihe schreiben [mm] :0+\bruch{1}{2}-\bruch{2}{3}+\bruch{3}{4}? [/mm] Aber hier kann ich doch mit der harmonischen Reihe antworten oder
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:43 Mi 19.11.2014 | Autor: | fred97 |
> HAllo Leute,
> ich soll die Folge [mm]1+\bruch{2}{3}+\bruch{3}{9}+..[/mm] als Reihe
> aufschreiben. Die lautet dann
> [mm]\summe_{k=0}^{\infty} \bruch{k+1}^{3^k}[/mm] ich habe es
> versucht mit dem wurzelkriterium zu lösen aber wie kann
> ich denn die k-te-Wurzel von k+1 ziehen?
????
[mm] \wurzel[k]{k+1} \to [/mm] 1 für k [mm] \to \infty
[/mm]
> Bei mir kam als
> Grenzwert [mm]\bruch{1}{3}[/mm] raus, was für Konvergenz spricht.
So ist es.
> 2. ich kann die Folge nicht als Reihe schreiben
> [mm]:0+\bruch{1}{2}-\bruch{2}{3}+\bruch{3}{4}?[/mm] Aber hier kann
> ich doch mit der harmonischen Reihe antworten oder
Kannst Du verraten, von welcher Reihe Du sprichst ?
FRED
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 14:52 Mi 19.11.2014 | Autor: | love |
Also ich lerne für die mundliche PRüfung und in einer der Protokolle steht, dass man die Folge 1. [mm] 0+\bruch{1}{2}-\bruch{3}{4}-\bruch{4}{5} [/mm] als Reihe schreiben muss und dann die Konvergenz bestimmen soll,aber irgendwie kann ich diese Folge nicht in Form einer unendlichen Reihe schreiben. Bei Konvergenz wollte ich mit der allternierenden harmonische Reihe die Konvergenz begründen.
In einem anderen Protokoll steht,dass man die Zahlen [mm] \bruch{1}{2}+\bruch{1}{3}+\bruch{1}{4}-\bruch{1}{9}+\bruch{1}{8}-\bruch{1}{27}+\bruch{1}{16} [/mm] als eine Reihe schreiben soll. Wie kann ich denn das hier als Reihe darstellen
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:43 Mi 19.11.2014 | Autor: | abakus |
> Also ich lerne für die mundliche PRüfung und in einer der
> Protokolle steht, dass man die Folge 1.
> [mm]0+\bruch{1}{2}-\bruch{3}{4}-\bruch{4}{5}[/mm] als Reihe
> schreiben muss und dann die Konvergenz bestimmen soll,aber
> irgendwie kann ich diese Folge nicht in Form einer
> unendlichen Reihe schreiben. Bei Konvergenz wollte ich mit
> der allternierenden harmonische Reihe die Konvergenz
> begründen.
>
> In einem anderen Protokoll steht,dass man die Zahlen
> [mm]\bruch{1}{2}+\bruch{1}{3}+\bruch{1}{4}-\bruch{1}{9}+\bruch{1}{8}-\bruch{1}{27}+\bruch{1}{16}[/mm]
> als eine Reihe schreiben soll. Wie kann ich denn das hier
> als Reihe darstellen
Hallo,
scheinbar wirfst du hier verschiedene Reihen aus verschiedenen Quellen durcheinander, manchmal noch mit einer wild wechselnden Abfolge von Plus- und Minuszeichen.
Bitte drücke dich KLAR aus, um welche Reihe es konkret geht.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:48 Mi 19.11.2014 | Autor: | love |
Meine frage ist ja, um welche Reihe es hier geht und wie man die beiden als Summenformel schreibt. Ich weiß ja selber nicht welche Reihe die sind
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:19 Mi 19.11.2014 | Autor: | Marcel |
Hallo,
> Meine frage ist ja, um welche Reihe es hier geht und wie
> man die beiden als Summenformel schreibt. Ich weiß ja
> selber nicht welche Reihe die sind
na, Du hast
$ [mm] \bruch{1}{2}+\bruch{1}{3}+\bruch{1}{4}-\bruch{1}{9}+\bruch{1}{8}-\bruch{1}{27}+\bruch{1}{16}$
[/mm]
hingeschrieben. Das soll wohl eine Reihe andeuten. Ich finde es schon
schlecht, Reihen als "unendlich viele Summanden" anzudeuten, denn
erstmal sind Reihen nichts anderes als die Folge der zugehörigen Teilsummen.
(Anfang Kapitel 6: http://www.math.uni-trier.de/~mueller/AnalysisI-IV.pdf.)
Aber hier eine Reihe quasi durch Angabe eines einzigen Glieds der Reihe
(=Folge ihrer Teilsummen) anzudeuten, ist ja didaktisch noch weniger gut...
Das ist aber eher ein didaktisches Problem, was man dem Prüfer ankreiden
könnte. Davon mal abgesehen ist es aber dennoch gängig (jedenfalls mit
der ...-Notation!).
(Einer meiner Diplomprüfer, Herr Luh, meinte damals in seinen Vorlesungen:
"Naja, wenn ich sowas lese, wie, dass man bei der Folge [mm] $(1/1,\;1/2,\;1/3,\;1/4,...)$ [/mm] die
nächsten 5 Folgeglieder angeben sollte, da gerate ich immer in Versuchung,
zu sagen: "Okay: Alle folgenden Folgeglieder sind 0!"
Das Gegenteil kann man mir eh nicht beweisen, da die Folge ja gar nicht
definiert worden ist. Ebensowenig, wie man eine auf [mm] $\IR$ [/mm] definierte
Funktion rein durch Angabe endlich vieler Werte konkret angeben kann.
Manchmal zweifle ich auch am Verstand der Leute, die derartige Aufgaben
stellen..." (Auch hier: Eher sinn- denn wortgemäß!))
Oben würde ich denken, dass Du Dich vielleicht verguckt hast und das
Vorzeichen vor [mm] $1/3\,$ [/mm] vielleicht negativ sein soll. Denn dann kann man
erahnen, dass vielleicht die Reihe
[mm] $\sum_{k=1}^\infty \left(\frac{1}{2^k}-\frac{1}{3^k}\right)=\left(\sum_{k=1}^N \left(\frac{1}{2^k}-\frac{1}{3^k}\right)\right)_{N=1}^\infty$
[/mm]
gemeint sein könnte. Wenn man aber hinguckt, dass bei der Andeutung mit
dem Summanden [mm] $1/2^4$ [/mm] aufgehört wird, sieht man, dass ich damit noch nicht
richtig liegen kann.
Man kann das Ganze auch mit "einer Reihe" hinschreiben, wenn man für
die Summanden Fallunterscheidungen trifft.
Was ich aber vorschlagen würde, ist
[mm] $\sum_{k=1}^\infty \left(\frac{(-1)^{k+1}+1}{2}*\frac{1}{2^{\red{(k+1)/2}}}\;-\;\frac{(-1)^{k}+1}{2}*\frac{1}{3^{\red{k/2}}}\right)$
[/mm]
Das Ganze, wie gesagt, unter der Annahme, dass eigentlich
[mm] $\bruch{1}{2}\red{\,-\,}\bruch{1}{3}+\bruch{1}{4}-\bruch{1}{9}+\bruch{1}{8}-\bruch{1}{27}+\bruch{1}{16}$
[/mm]
gemeint war!
P.S. Die Konvergenz der letzten Reihe ist ziemlich trivial - ist Dir klar, warum?
Stichwort: geometrische Reihe, Majorantenkriterium und "Summensatz
für konvergente Reihen"
P.P.S. Um die letzte Darstellung zu verstehen, untersuche erstmal, welche
Werte
[mm] $((-1)^{k+1}+1)/2$
[/mm]
für gerade bzw. ungerade [mm] $k\,$ [/mm] annimmt! Das ist quasi eine "On/Off"-Folge...
Gruß,
Marcel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:52 Mi 19.11.2014 | Autor: | Marcel |
Hallo,
übrigens mal zum Testen der letzten Formel ein Code für Matlab bzw.
Octave:
1: | N=7;
| 2: | S=0;
| 3: | for k=1:N
| 4: | S=S+((-1)^(k+1)+1)/2*1/2^((k+1)/2)-((-1)^k+1)/2*1/3^(k/2)
| 5: | end |
Ausgaben:
1: | S = 0.50000
| 2: | S = 0.16667
| 3: | S = 0.41667
| 4: | S = 0.30556
| 5: | S = 0.43056
| 6: | S = 0.39352
| 7: | S = 0.45602 |
1. Zeile: 1/2
2. Zeile: 1/2-1/3
3. Zeile: 1/2-1/3+1/4
4. Zeile: 1/2-1/3+1/4-1/9
5. Zeile: 1/2-1/3+1/4-1/9+1/8
6. Zeile: 1/2-1/3+1/4-1/9+1/8-1/27
7. Zeile: 1/2-1/3+1/4-1/9+1/8-1/27+1/16
Gruß,
Marcel
|
|
|
|