www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz von Reihen
Konvergenz von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Reihen: "Hilfestellung"
Status: (Frage) für Interessierte Status 
Datum: 15:09 Di 28.12.2010
Autor: spoechelist123

Aufgabe
Für natürliche Zahlen n bezeichne d(n) die Anzahl der natürlichen Teiler
von n, z.B. ist d(1) = 1, d(4) = 3, d(10) = 4.

Zeigen Sie für komplexe z mit |z| < 1 die Identität
[mm] \summe_{n=1}^{\infty} \bruch{z^{n}}{1-z^{n}} [/mm] = [mm] \summe_{n=1}^{\infty} d(n)z^{n} [/mm]

wobei beide Reihen absolut konvergieren. Konvergiert eine der Reihen auch für |z| > 1? (Die linke Reihe heißt Lambert Reihe und die Reihe rechts ist deren Potenzreihenentwicklung
um den Nullpunkt.)

Hallo =)
Komm mit der Aufgabe gar nicht klar. Weiß irgendwie gar nicht, was man dort machen soll. Bitte helft mir.
Über eine Hilfestellung würde ich mich sehr freuen :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz von Reihen: Doppelpost
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:36 Di 28.12.2010
Autor: Loddar

Halo spoechelist,

[willkommenmr] !!


Du hast diese Frage bereits hier gestellt.
Bitte vermeide in Zukunft derartige Doppelposts.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]